Synthesis of some dihydropyrimidinone derivatives and study of their anti-inflammatory activity
DOI:
https://doi.org/10.18231/2348-0335.2018.0003Keywords:
Dihydropyrimidinones derivative synthesis, toxicity study, anti inflammatory activity studyAbstract
This research revealed that the numbers of available heterocyclic compounds are mainly focused on nitrogen containing compounds, such as quinazolines, indoles, benzimidazole, quinoxalines, coumarins and pyrimidines etc. A mixture of substituted aldehydes (0.01 mol) like acetyl acetone (method 1) or ethyl acetoacetate (method 2), urea or thiourea (0.01 mol) and lemon juice (0.5 ml) were taken into a round bottom flask and reflux for 1 hour at 800C under continuous stirring. After completion of the reaction the final product was recrystalized for purification. Simultaneously toxicity and anti-inflammatory activity were performed. But in case of using ethyl acetoacetate in method 2, the percentage yield was more as compare to using of acetyl acetone in method 1. So the derivatives obtained from method 2 were selected for further toxicity and anti- inflammatory activities.
Downloads
References
Salehi H, Guo, Q. X. A facile and efficient one-pot synthesis of dihydropyrimidones catalyzed by magnesium bromide under solvent-free conditions. Synthetic Communication, 34(1), 171–179 (2004).
Jiang Z, Chen R. Ammonium Chloride–Catalyzed One-Pot Synthesis of 4(3H) – Quinazolines under solvent-free conditions. Synthetic Communication, 35, 503–509, (2005).
Ranu B. C, Hajra A. S, Dey S. A practical and green approach towards synthesis of dihydropyrimidones without any solvent or catalyst. Organic Process Research & Development, 6, 817-818 (2002).
Salehi, P, Dabiri, M, Zolfigolc M. A, Bodaghifard M. A. Tetrahedron Letters, 44, 2889–2891 (2003).
Stadler A, Kappe C. O. J. Automated library generation using sequential microwave-assisted chemistry. Application toward the Biginelli multicomponent condensation. Journal of combinatorial chemistry, 3, 624-630, (2001).
Ma Y, Qian, C, Wang L, Yang M. J. Green chemistry approach to synthesis of some new trifluoromethyl containing tetrahydropyrimidines under solvent free conditions. Journal of Organic Chemistry, 65, 3864-3868, (2000).
Jin T. S, Wang H. X, Xing C. Y, Li X. L, Li T. S. Michael Addition Catalyzed by Potassium Hydroxide under ultrasound. Synthetic Communication, 34(16), 3009–3016 (2004).
Bose D. S, Sudharshan M, Chavhan S. W, Arkivoc. New Method for the Synthesis of 1-Methylimidazolium Trifluoroacetate and Its Application in Biginelli Reaction. Green and Sustainable Chemistry, 3, 14-17 (2013).
Srinivasan, John A. Comparison of different Lewis acids supported on natural phosphate as new catalysts for chemoselective dithioacetalization of carbonyl compounds under solvent-free conditions. Journal of Molecular Catalysis, 2339-15 (2005).
Munoz-Muniz O, Quintanar-Audelo M, Juaristi. Re-examination of CeCl3 and In Cl3 as Activators in the Diastereoselective Mukaiyama Aldol Reaction in Aqueous Media. The Journal of Organic Chemistry, 68 (4), 1622-1625 (2003).
Deshmukh M. B, Salunkhe, S. M.; Patil, D. R, Anbhule, P. V. A novel and efficient one step synthesis of 2-amino-5-cyano-6-hydroxy-4-aryl pyrimidines and their anti-bacterial activity. European Journal of Medicinal Chemistry, 44 (6), 2651-2655 (2009).
Nandi G.C, Samai S, Sing M.S. An efficient one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under solvent free condition. The Journal of Organic Chemistry, 65 (34), 7129-7134 (2009).
Pandit S, Shaikh R, Pandit V. Synthesis of 5-unsubstituted -3, 4-dihydropyridine-2-(1h)- ones using nbs as a catalyst under solvent free conditions. Rasayan Journal of Organic Chemistry, 2, 907-911, (2009).
Shen Z-L, Xu, X-P, Ji, S-J. J. Bronsted Base-Catalyzed One-Pot Three-Component Biginelli-Type Reaction: An Efficient Synthesis of 4, 5, 6-Triaryl-3, 4-dihydropyrimidin-2(1H)-one and Mechanistic Study. The Journal of Organic Chemistry, 75, 1162-1167 (2010).
Rafiee E, Shahbazi, F. Journal of Molecular Catalysis A: Chemical, 250, 57–61 (2006).
Mishra B. G, Kumar D, Rao V. S. Al2O3/MeSO3H: A Novel and Recyclable Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidinones or Their Sulfur Derivatives in Biginelli Condensation. Synthetic Communications, 7, 457–459 (2006).
E. Cobichon D.J. The basis of toxicity testing 2nd Edition, 43-86, (1997).
Cobert A. Turner. Screening methods in Pharmacology, New York, academic press, 155, 112-117 (1965).
Published
How to Cite
Issue
Section
Copyright (c) 2020 Naresh Podilla, Tirthankar Choudhury

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
In submitting an article to Journal of Applied Pharmaceutical Research (JOAPR) I certify that:
- I am authorized by my co-authors to enter into these arrangements.
- I warrant, on behalf of myself and my co-authors, that:
- the article is original, has not been formally published in any other peer-reviewed journal, is not under consideration by any other journal and does not infringe any existing copyright or any other third party rights;
- I am/we are the sole author(s) of the article and have full authority to enter into this agreement and in granting rights to JOAPR are not in breach of any other obligation;
- the article contains nothing that is unlawful, libellous, or which would, if published, constitute a breach of contract or of confidence or of commitment given to secrecy;
- I/we have taken due care to ensure the integrity of the article. To my/our - and currently accepted scientific - knowledge all statements contained in it purporting to be facts are true and any formula or instruction contained in the article will not, if followed accurately, cause any injury, illness or damage to the user.
- I, and all co-authors, agree that the article, if editorially accepted for publication, shall be licensed under the Creative Commons Attribution-NonCommercial 4.0 International License
- I, and all co-authors, agree that, if the article is editorially accepted for publication in Journal of Applied Pharmaceutical Research (JOAPR) data included in the article shall be made available under the Creative Commons 1.0 Public Domain Dedication waiver, unless otherwise stated. For the avoidance of doubt it is stated that sections 1, 2, and 3 of this license agreement shall apply and prevail.