Advancements in formulations and technologies for colon-targeted drug delivery
DOI:
https://doi.org/10.69857/joapr.v13i2.825Keywords:
Colon targeted drug delivery, nanotechnology, novel approaches, translational technologiesAbstract
Background: Colonic administration of drugs may enhance drug absorption, reduce adverse reactions, and facilitate delivery to specific therapeutic targets. Objective: Delivering pharmaceuticals to the colon poses challenges that require innovative formulation strategies. Methodology: Various formulation approaches have been explored for colon-targeted drug delivery systems. These approaches target the colon using formulation components that interact with GI physiology parameters such as pH, colonic flora, and enzymes. Result and Discussion: The article discussed the various research studies conducted for colon targeting involving novel strategies such as pH-dependent, enzyme-dependent, Ligand-Receptor-based, new technologies, Phloral, and magnetically derived approaches. It also explored the translational technologies, such as in vivo, in vitro, and in silico, which expedite the transition from fundamental research to clinical application and enhance therapeutic outcomes. Conclusion: In conclusion, the most relevant preclinical studies, encompassing in vitro, in vivo, and in silico research, are delineated to facilitate the strategic advancement of novel colon-targeted therapeutics.
Downloads
References
Yadav V, House A, Matiz S, McCoubrey LE, Bettano KA, Bhave L, Wang M, Fan P, Zhou S, Woodhouse JD, Poimenidou E, Dou L, Basit AW, Moy LY, Saklatvala R, Hegde LG, Yu H. Ileocolonic-Targeted JAK Inhibitor: A Safer and More Effective Treatment for Inflammatory Bowel Disease. Pharmaceutics, 14(11), 2385 (2022) https://doi.org/10.3390/pharmaceutics14112385.
Muhammed RA, Mohammed S, Visht S, Yassen AO. A Review on Development of Colon Targeted Drug Delivery System. International Journal of Applied Pharmaceutics, 16(2), 12–27 (2024) https://doi.org/10.22159/ijap.2024v16i2.49293.
Philip A.K., Mohammad B.I., Al-Aubaidy H.A. Colon-responsive targeted drug delivery for treating colonic disorder. Advanced Drug Delivery Systems for Colonic Disorders, 181-205 (2024) 10.1016/B978-0-443-14044-0.00003-X
McCoubrey LE, Favaron A, Awad A, Orlu M, Gaisford S, Basit AW. Colonic Drug Delivery: Formulating the Next Generation of Colon-Targeted Therapeutics. Journal of Controlled Release, 353, 1107–1126 (2023) https://doi.org/10.1016/j.jconrel.2022.12.029.
Yamamura R, Inoue KY, Nishino K, Yamasaki S. Intestinal and Fecal pH in Human Health. Frontiers in Microbiomes, 2, 1192316 (2023) https://doi.org/10.3389/frmbi.2023.1192316.
Singh J, Sharma M, Singh H, Arora P, Utreja P, Kumar S. Formulation, Characterization and In Vitro Evaluation of Mesalamine and Bifidobacterium bifidum Loaded Hydrogel Beads in Capsule System for Colon Targeted Delivery. AAPS PharmSciTech, 25, 61 (2024) https://doi.org/10.1208/s12249-024-02764-3.
Miranda-Calderon L, Yus C, Landa G, Mendoza G, Arruebo M, Irusta S. Pharmacokinetic Control on the Release of Antimicrobial Drugs from pH-Responsive Electrospun Wound Dressings. International Journal of Pharmaceutics, 624, 122003 (2022) https://doi.org/10.1016/j.ijpharm.2022.122003.
Kulkarni N, Jain P, Shindikar A, Suryawanshi P, Thorat N. Advances in the Colon-Targeted Chitosan-Based Multiunit Drug Delivery Systems for the Treatment of Inflammatory Bowel Disease. Carbohydrate Polymers, 288, 119351 (2022) https://doi.org/10.1016/j.carbpol.2022.119351.
Manzanares-Guevara LA, Gasperin-Bulbarela J, Cabanillas-Bernal O, Renteria-Maciel M, Licea-Claverie A, Méndez ER, Licea-Navarro AF. Preparation of pH-Sensitive Nanogels Bioconjugated with Shark Antibodies (VNAR) for Targeted Drug Delivery with Potential Applications in Colon Cancer Therapies. PLoS One, 19, e0294874 (2024) https://doi.org/10.1371/journal.pone.0294874.
Kassem AM, Almukainzi M, Faris TM, Ibrahim AH, Anwar W, Elbahwy IA, El-Gamal FR, Zidan MF, Akl MA, Abd-ElGawad AM, Elshamy AI, Elmowafy M. A pH-Sensitive Silica Nanoparticles for Colon-Specific Delivery and Controlled Release of Catechin: Optimization of Loading Efficiency and In Vitro Release Kinetics. European Journal of Pharmaceutical Sciences, 192, 106652 (2024) https://doi.org/10.1016/j.ejps.2023.106652.
Kesharwani R, Jaiswal P, Patel DK, Yadav PK. Lipid-Based Drug Delivery System (LBDDS): An Emerging Paradigm to Enhance Oral Bioavailability of Poorly Soluble Drugs. Biomedical Materials & Devices, 1, 648–663 (2023) https://doi.org/10.1007/s44174-022-00041-0.
Kim HY, Cheon JH, Lee SH, Min JY, Back SY, Song JG, Kim DH, Lim SJ, Han HK. Ternary Nanocomposite Carriers Based on Organic Clay-Lipid Vesicles as an Effective Colon-Targeted Drug Delivery System: Preparation and In Vitro/In Vivo Characterization. Journal of Nanobiotechnology, 18, 17 (2020) https://doi.org/10.1186/s12951-020-0579-7.
Makeen HA, Mohan S, Al-Kasim MA, Attafi IM, Ahmed RA, Syed NK, Sultan MH, Al-Bratty M, Alhazmi HA, Safhi MM, Ali R, Intakhab Alam M. Gefitinib Loaded Nanostructured Lipid Carriers: Characterization, Evaluation and Anti-Human Colon Cancer Activity In Vitro. Drug Delivery, 27, 622-631 (2020) https://doi.org/10.1080/10717544.2020.1754526.
Alaaeldin E, Refaat H, Saber EA, Aziz NM, Abdel-Maqsoud NMR, Aleem MMA El, Kamel MY, Mady FM. Co-Administration of Thymoquinone and Propolis in Liposomal Formulations as a Potential Approach for Treatment of Acetic Acid-Induced Ulcerative Colitis: Physiological and Histopathological Analysis. AAPS PharmSciTech, 24, 190 (2023) https://doi.org/10.1208/s12249-023-02637-1.
R S, P S. Design of Colon-Specific Delivery of Sulfasalazine Loaded Nanoparticles for Inflammatory Bowel Syndrome: Application of Experimental Design. Research Journal of Pharmacy and Technology, 17(3), 1272–1276 (2024) https://doi.org/10.52711/0974-360X.2024.00199.
Lou J, Duan H, Qin Q, Teng Z, Gan F, Zhou X, Zhou X. Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics, 15(2), 484 (2023) https://doi.org/10.3390/pharmaceutics15020484.
Wijewantha N, Eikanger MM, Antony RM, Potts RA, Rezvani K, Sereda G. Targeting Colon Cancer Cells with Enzyme-Triggered Casein-Gated Release of Cargo from Mesoporous Silica-Based Nanoparticles. Bioconjugate Chemistry, 32, 2353–2365 (2021) https://doi.org/10.1021/acs.bioconjchem.1c00416.
Lee SH, Bajracharya R, Min JY, Han J-W, Park BJ, Han H-K. Strategic Approaches for Colon Targeted Drug Delivery: An Overview of Recent Advancements. Pharmaceutics, 12(1), 68 (2020) https://doi.org/10.3390/pharmaceutics12010068.
Yue Z, Zhu Y, Chen T, Feng T, Zhou Y, Zhang J, Zhang N, Yang J, Luo G, Wang Z. Bletilla striata Polysaccharide-Coated Andrographolide Nanomicelles for Targeted Drug Delivery to Enhance Anti-Colon Cancer Efficacy. Frontiers in Immunology, 15, 1380229 (2024) https://doi.org/10.3389/fimmu.2024.1380229.
Lee J-J, Dinh L, Kim H, Lee J, Lee J, Sung Y, Yeo S, Hwang S-J. Polysaccharide-Based Emulsion Gels for the Prevention of Postoperative Adhesions and as a Drug Delivery System Using 5-Fluorouracil. International Journal of Pharmaceutics, 661, 124386 (2024) https://doi.org/10.1016/j.ijpharm.2024.124386.
Varum F, Freire AC, Fadda HM, Bravo R, Basit AW. A Dual pH and Microbiota-Triggered Coating (Phloral™) for Fail-Safe Colonic Drug Release. International Journal of Pharmaceutics, 583, 119379 (2020) https://doi.org/10.1016/j.ijpharm.2020.119379.
Yadav V, House A, Matiz S, McCoubrey LE, Bettano KA, Bhave L, Wang M, Fan P, Zhou S, Woodhouse JD, Poimenidou E, Dou L, Basit AW, Moy LY, Saklatvala R, Hegde LG, Yu H. Ileocolonic-Targeted JAK Inhibitor: A Safer and More Effective Treatment for Inflammatory Bowel Disease. Pharmaceutics, 14(11), 2385 (2022) https://doi.org/10.3390/pharmaceutics14112385.
Varum F, Freire AC, Bravo R, Basit AW. OPTICORE™: An Innovative and Accurate Colonic Targeting Technology. International Journal of Pharmaceutics, 583, 119372 (2020) https://doi.org/10.1016/j.ijpharm.2020.119372.
Borderwala K, Rathod S, Yadav S, Vyas B, Shah P. Eudragit S-100 Surface Engineered Nanostructured Lipid Carriers for Colon Targeting of 5-Fluorouracil: Optimization and In Vitro and In Vivo Characterization. AAPS PharmSciTech, 22, 216 (2021) https://doi.org/10.1208/s12249-021-02099-3.
Deng J, Wu Z, Zhao Z, Wu C, Yuan M, Su Z, Wang Y, Wang Z. Berberine-Loaded Nanostructured Lipid Carriers Enhance the Treatment of Ulcerative Colitis. International Journal of Nanomedicine, 15, 3937—3951 (2020) https://doi.org/10.2147/IJN.S247406.
Boztepe T, Scioli-Montoto S, Gambaro RC, Ruiz ME, Cabrera S, Alemán J, Islan GA, Castro GR, León IE. Design, Synthesis, Characterization, and Evaluation of the Anti-HT-29 Colorectal Cell Line Activity of Novel 8-Oxyquinolinate-Platinum(II)-Loaded Nanostructured Lipid Carriers Targeted with Riboflavin. Pharmaceutics, 15(13), 1021 (2023) https://doi.org/10.3390/pharmaceutics15031021.
Yosef AM, Alqarni RS, Sayd FY, Alhawiti MS, Almahlawi RM, Prabahar K, Uthumansha U, Alanazi MA, El-Sherbiny M, Elsherbiny N, Qushawy M. Preparation and Characterization of Novel Polyelectrolyte Liposomes Using Chitosan Succinate Layered over Chitosomes: A Potential Strategy for Colon Cancer Treatment. Biomedicines, 12(1), 126 (2024) https://doi.org/10.3390/biomedicines12010126.
Maurelli AM, Ferreira B, Dias S, Almeida H, De Leo V, Sarmento B, Catucci L, das Neves J. Impact of Polyethylene Glycol and Polydopamine Coatings on the Performance of Camptothecin-Loaded Liposomes for Localized Treatment of Colorectal Cancer. Materials Advances, 5, 4276–4285 (2024) https://doi.org/10.1039/D3MA01158E.
Barbosa De Souza J, De Lacerda Coriolano D, Camila R, Silva S, Dias Da Costa Júnior S, André L, Campos A, Dillion I, Cavalcanti L, Cajubá De Britto M, Nogueira L, Rêgo V, Pereira A, Carolina M, Brelaz-De-Castro A, Ferro Cavalcanti IM. Ceftazidime and Usnic Acid Encapsulated in Chitosan-Coated Liposomes for Oral Administration Against Colorectal Cancer-Inducing Escherichia coli. Pharmaceuticals, 17(6), 802 (2024) https://doi.org/10.3390/ph17060802.
Wang R, Rao C, Liu Q, Liu X. Optimization of Conditions of Zanthoxylum Alkylamides Liposomes by Response Surface Methodology and the Absorption Characteristics of Liposomes in the Caco-2 Cell Monolayer Model. ACS Omega, 9, 10992–11004 (2024) https://doi.org/10.1021/acsomega.4c00074.
Mohamed JMM, Ahmad F, El-Sherbiny M, Al Mohaini MA, Venkatesan K, Alrashdi YBA, Eldesoqui MB, Ibrahim AE, Dawood AF, Ibrahim AM, El Deeb S. Optimization and Characterization of Quercetin-Loaded Solid Lipid Nanoparticles for Biomedical Application in Colorectal Cancer. Cancer Nanotechnology, 15, 1–17 (2024) https://doi.org/10.1186/s12645-024-00249-3/figures/9.
El-Dakroury WA, Zewail MB, Asaad GF, Abdallah HMI, Shabana ME, Said AR, Doghish AS, Azab HA, Amer DH, Hassan AE, Sayed AS, Samra GM, Sallam AAM. Fexofenadine-Loaded Chitosan Coated Solid Lipid Nanoparticles (SLNs): A Potential Oral Therapy for Ulcerative Colitis. European Journal of Pharmaceutics and Biopharmaceutics, 196, 114205 (2024) https://doi.org/10.1016/j.ejpb.2024.114205.
Ahmed SS, Baqi MA, Baba MZ, Jawahar N. Formulation, Characterization, and Optimization of Folic Acid-Tailored Daidzein Solid Lipid Nanoparticles for the Improved Cytotoxicity Against Colon Cancer Cells. International Journal of Applied Pharmaceutics, 16(2), 320-328 (2024) https://doi.org/10.22159/ijap.2024v16i2.49879.
Golla VSK, Boddu P, Nageswara S. Statistical Experimental Approach in Designing pH-Sensitive Oxaliplatin Lipid Nanoparticles for Application in Colorectal Cancer Therapy. Bionanoscience, 13, 1100-1109 (2023) https://doi.org/10.1007/s12668-023-01140-y.
Vaezi Z, Ghavami SB, Farmani M, Mahdavian R, Aghdaei HA, Naderi-Manesh H. Oral Formulation of 5-Aminosalicylic Acid-Hemoglobin Bio-Adhesive Nanoparticles Enhance Therapeutic Efficiency in Ulcerative Colitis Mice: A Preclinical Evaluation. Journal of Pharmaceutical Sciences, 113(8), 2331–2341 (2024) https://doi.org/10.1016/j.xphs.2024.03.028.
Bhattacharya S, Page A, Shinde P. Capecitabine Loaded Potato Starch-Chitosan Nanoparticles: A Novel Approach for Targeted Therapy and Improved Outcomes in Aggressive Colon Cancer. European Journal of Pharmaceutics and Biopharmaceutics, 200, 114328 (2024) https://doi.org/10.1016/j.ejpb.2024.114328.
Medina-Moreno A, El-Hammadi MM, Arias JL. pH-Dependent, Extended Release and Enhanced In Vitro Efficiency Against Colon Cancer of Tegafur Formulated Using Chitosan-Coated Poly(ε-Caprolactone) Nanoparticles. J Drug Deliv Sci Technol, 86, 104594 (2023) https://doi.org/10.1016/j.jddst.2023.104594.
Firouzi Amandi A, Jokar E, Eslami M, Dadashpour M, Rezaie M, Yazdani Y, Nejati B. Enhanced Anti-Cancer Effect of Artemisinin- and Curcumin-Loaded Niosomal Nanoparticles Against Human Colon Cancer Cells. Medical Oncology, 40, 170 (2023) https://doi.org/10.1007/s12032-023-02032-7.
Madhavi N, Divya B, Sudhakar B, Rao TR. Effect of Bioresorbable Copolymers on Mesalamine Loaded Microspheres for Colon-Specific Drug Delivery. Int J Pharm Investig, 14(2), 428–435 (2024) https://doi.org/10.5530/ijpi.14.2.53.
Peñalva R, Martínez-López AL, Gamazo C, Gonzalez-Navarro CJ, González-Ferrero C, Virto-Resano R, Brotons-Canto A, Vitas AI, Collantes M, Peñuelas I, Irache JM. Encapsulation of Lactobacillus plantarum in Casein-Chitosan Microparticles Facilitates the Arrival to the Colon and Develops an Immunomodulatory Effect. Food Hydrocoll, 136, 108213 (2023) https://doi.org/10.1016/j.foodhyd.2022.108213
Han A, Chang YH. Physicochemical, Structural, and In-Vitro Release Properties of Carboxymethyl Cellulose-Based Cryogel Beads Incorporating Resveratrol-Loaded Microparticles for Colon-Targeted Delivery System. Food Chem, 457, 140153 (2024) https://doi.org/10.1016/J.FOODCHEM.2024.140153.
Helmy AM, Elsabahy M, Abd-Elkareem M, Ibrahim EA, Soliman GM. High-Payload Chitosan Microparticles for the Colonic Delivery of Quercetin: Development and In-Vivo Evaluation in a Rabbit Colitis Model. J Drug Deliv Sci Technol, 58, 101832 (2020) https://doi.org/10.1016/j.jddst.2020.101832.
Zhao S, Zhang J, Qiu M, Hou Y, Li X, Zhong G, Gou K, Li J, Zhang C, Qu Y, Wang X. Mucoadhesive and Thermosensitive Bletilla striata Polysaccharide/Chitosan Hydrogel Loaded Nanoparticles for Rectal Drug Delivery in Ulcerative Colitis. Int J Biol Macromol, 254, 127761 (2024) https://doi.org/10.1016/j.ijbiomac.2023.127761.
Sandu MKR, Majumdar S, Chatterjee S, Mazumder R. Optimization and Characterization of Xanthan Gum Based Multiparticulate Formulation for Colon Targeting. Intelligent Pharmacy, 2, 339-345 (2024) https://doi.org/10.1016/j.ipha.2024.02.007.
Chen H, Xu R, Xu E, Chen Y, Niu C, Chen Y. Construction and Performance Evaluation of Polyguluronic Acid Polysaccharides-Based Drug Delivery Systems. Colloids Surf B Biointerfaces, 224, 114083 (2024) https://doi.org/10.1016/J.COLSURFB.2024.114083.
Shashidhara V, Alwarsamy M. Pectin Nanoforms—A Multifaceted Polysaccharide and a Propitious Nanocarrier for Medical Ailments. Polymer Bulletin, 81(6), 4801–4818 (2024) https://doi.org/10.1007/s00289-023-04972-6.
Sharma S, Sharma N, Sharma A, Kurmi B Das, Khanna K, Karwasra R, Singh AK, Chaudhary A. Amelioration of Experimental Colitis by a Site-Specific Novel Plant Polysaccharide (Opuntia ficusindica) Based Macroparticles Containing Probiotic Biomass and Mesalazine. J Drug Deliv Sci Technol, 86, 104763 (2023) https://doi.org/10.1016/J.JDDST.2023.104763.
Pai FT, Lin WJ. Synergistic cytotoxicity of irinotecan combined with polysaccharide-based nanoparticles for colorectal carcinoma. Biomaterials Advances, 153, 213577 (2023) https://doi.org/10.1016/j.bioadv.2023.213577.
Patel J, Patel K, Shah S. Fabrication of a Dual-Triggered Natural Gum–Based Multi-Particulate Colon-Targeted Drug Delivery System of Budesonide Using the QbD Approach. J Pharm Innov, 18, 1992–2012 (2023) https://doi.org/10.1007/s12247-023-09764-z.
Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Kumar R, Kumar A, Imran M, Chellappan DK, Gupta G, de Jesus Andreoli Pinto T, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Polysaccharide, fecal microbiota, and curcumin-based novel oral colon-targeted solid self-nanoemulsifying delivery system: formulation, characterization, and in-vitro anticancer evaluation. Mater Today Chem, 26, 101165 (2022) https://doi.org/10.1016/j.mtchem.2022.101165.
Cepero A, Jiménez-Carretero M, Jabalera Y, Gago L, Luque C, Cabeza L, Melguizo C, Jimenez-Lopez C, Prados J. LGR5 as a Therapeutic Target of Antibody-Functionalized Biomimetic Magnetoliposomes for Colon Cancer Therapy. Int J Nanomedicine, 19, 1843-1865 (2024) https://doi.org/10.2147/IJN.S440881.
Zhou L, Shang Y, Wang Y, Wei X. Transferrin modified PEG–PLGA nanoparticles: highly effective notoginsenoside R1 formulations for the treatment of ulcerative colitis. J Pharm Investig, 54, 357–373 (2024) https://doi.org/10.1007/s40005-023-00657-4.
Bhaskaran NA, Jitta SR, Salwa, Kumar L, Sharma P, Kulkarni OP, Hari G, Gourishetti K, Verma R, Birangal SR, Bhaskar KV. Folic acid-chitosan functionalized polymeric nanocarriers to treat colon cancer. Int J Biol Macromol, 253, 127142 (2023) https://doi.org/10.1016/j.ijbiomac.2023.127142.
Zhang S, Kang L, Hu S, Hu J, Fu Y, Hu Y, Yang X. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease. Int J Biol Macromol, 167, 1598-1612 (2021) https://doi.org/10.1016/j.ijbiomac.2020.11.117.
Varanko A, Saha S, Chilkoti A. Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev, 156, 133–187 (2020) https://doi.org/10.1016/j.addr.2020.08.008.
de Oliveira ECL, da Costa KS, Taube PS, Lima AH, Junior C de S de S. Biological Membrane-Penetrating Peptides: Computational Prediction and Applications. Front Cell Infect Microbiol, 12, 838259 (2022) https://doi.org/10.3389/fcimb.2022.838259.
Andretto V, Rosso A, Zilio S, Sidi-Boumedine J, Boschetti G, Sankar S, Buffier M, Miele AE, Denis M, Choffour PA, Briançon S, Nancey S, Kryza D, Lollo G. Peptide-Based Hydrogel for Nanosystems Encapsulation: the Next Generation of Localized Delivery Systems for the Treatment of Intestinal Inflammations. Adv Healthc Mater, 2024, 2303280 (2024) https://doi.org/10.1002/adhm.202303280.
Tang X, Shang Y, Yang H, Song Y, Li S, Qin Y, Song J, Kang C, Liu Y, Zhang D, Chen L. Targeted delivery of Fc-fused PD-L1 for effective management of acute and chronic colitis. Nat Commun, 2024, 1673 (2024) https://doi.org/10.1038/s41467-024-46025-0.
Ye N, Zhao P, Ayue S, Qi S, Ye Y, He H, Dai L, Luo R, Chang D, Gao F. Folic acid-modified lactoferrin nanoparticles coated with a laminarin layer loaded curcumin with dual-targeting for ulcerative colitis treatment. Int J Biol Macromol, 232, 123229 (2023) https://doi.org/10.1016/j.ijbiomac.2023.123229.
Rahmati A, Homayouni Tabrizi M, Karimi E, Zarei B. Fabrication and assessment of folic acid conjugated-chitosan modified PLGA nanoparticle for delivery of alpha terpineol in colon cancer. J Biomater Sci Polym Ed, 33,1289-1307 (2022) https://doi.org/10.1080/09205063.2022.2051693.
Kotla NG, Isa ILM, Rasala S, Demir S, Singh R, Baby BV, Swamy SK, Dockery P, Jala VR, Rochev Y, Pandit A. Modulation of Gut Barrier Functions in Ulcerative Colitis by Hyaluronic Acid System. Adv Sci, 9, 2103189 (2022) https://doi.org/10.1002/advs.202103189.
Lv Y, Ren M, Yao M, Zou J, Fang S, Wang Y, Lan M, Zhao Y, Gao F. Colon-specific delivery of methotrexate using hyaluronic acid modified pH-responsive nanocarrier for the therapy of colitis in mice. Int J Pharm, 635, 122741 (2023) https://doi.org/10.1016/j.ijpharm.2023.122741.
Pan DC, Krishnan V, Salinas AK, Kim J, Sun T, Ravid S, Peng K, Wu D, Nurunnabi M, Nelson JA, Niziolek Z, Guo J, Mitragotri S. Hyaluronic acid–doxorubicin nanoparticles for targeted treatment of colorectal cancer. Bioeng Transl Med, 6, e10166 (2021) https://doi.org/10.1002/btm2.10166.
Viera Herrera C, O’Connor PM, Ratrey P, Paul Ross R, Hill C, Hudson SP. Anionic liposome formulation for oral delivery of thuricin CD, a potential antimicrobial peptide therapeutic. Int J Pharm, 654, 123918 (2024) https://doi.org/10.1016/j.ijpharm.2024.123918.
Guo HX, Wang BB, Wu HY, Feng HY, Zhang HY, Gao W, Yuan B. Turtle peptide and its derivative peptide ameliorated DSS-induced ulcerative colitis by inhibiting inflammation and modulating the composition of the gut microbiota. Int Immunopharmacol, 132, 112024 (2024) https://doi.org/10.1016/J.INTIMP.2024.112024.
Li Y, Liu J, Shi X, Li S, Zhang H, Zhang L, Huang X, Liu S, Wang W, Tian L, Zhang T, Du Z. Casein-quaternary chitosan complexes induced the soft assembly of egg white peptide and curcumin for ulcerative colitis alleviation. Int J Biol Macromol, 269, 132107 (2024) https://doi.org/10.1016/J.IJBIOMAC.2024.132107.
Lee SH, Bajracharya R, Min JY, Han JW, Park BJ, Han HK. Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics, 12(1), 68 (2020) https://doi.org/10.3390/pharmaceutics12010068.
Zhu H, Zhang L, Kou F, Zhao J, Lei J, He J. Targeted therapeutic effects of oral magnetically driven pectin nanoparticles containing chlorogenic acid on colon cancer. Particuology, 84, 53-59 (2024). https://doi.org/10.1016/j.partic.2023.02.021.
Day NB, Wixson WC, Shields IV CW. Magnetic systems for cancer immunotherapy. Acta Pharmaceutica Sinica B, 11(8), 2172-2196 (2021) https://doi.org/10.1016/j.apsb.2021.03.023.
Kumar L, Singh B, Saini G, Sharma A, Sharma P, Thakur V, Thakur N, Vyas M. Design, Formulation, Optimization and In-vitro Evaluation of Colon-targeted Tablet Utilizing Polymer Isolated from Artocarpus heterophyllus. Int J Drug Deliv Technol, 12, 1112-1119 (2022) https://doi.org/10.25258/ijddt.12.3.31.
Naga Durga DH, Sowjanya TL, Pavani T, Duppala L. Formulation development and in-vitro evaluation of Molsidomine matrix tablets for colon specific release. J Drug Deliv Ther, 10, 59-68 (2020) https://doi.org/10.22270/jddt.v10i2.3900.
Karan S, Debnath S, Kuotsu K, Chatterjee TK. In-vitro and in-vivo evaluation of polymeric microsphere formulation for colon targeted delivery of 5-fluorouracil using biocompatible natural gum katira. Int J Biol Macromol, 158, 922-936 (2020) https://doi.org/10.1016/j.ijbiomac.2020.04.129.
García MA, Varum F, Al-Gousous J, Hofmann M, Page S, Langguth P. In Vitro Methodologies for Evaluating Colon-Targeted Pharmaceutical Products and Industry Perspectives for Their Applications. Pharmaceutics, 14(2), 291 (2022) https://doi.org/10.3390/pharmaceutics14020291.
Varum F, Freire AC, Fadda HM, Bravo R, Basit AW. A dual pH and microbiota-triggered coating (PhloralTM) for fail-safe colonic drug release. Int J Pharm, 583, 119379 (2020) https://doi.org/10.1016/J.IJPHARM.2020.119379.
Yadav V, Mai Y, McCoubrey LE, Wada Y, Tomioka M, Kawata S, Charde S, Basit AW. 5-aminolevulinic acid as a novel therapeutic for inflammatory bowel disease. Biomedicines, 9, 578 (2021) https://doi.org/10.3390/biomedicines9050578.
Froidurot A, Julliand V. Cellulolytic bacteria in the large intestine of mammals. Gut Microbes, 14(1), 2031694 (2022) https://doi.org/10.1080/19490976.2022.2031694.
Javdan B, Lopez JG, Chankhamjon P, Lee YCJ, Hull R, Wu Q, Wang X, Chatterjee S, Donia MS. Personalized Mapping of Drug Metabolism by the Human Gut Microbiome. Cell, 181, 1664-1680 (2020) https://doi.org/10.1016/j.cell.2020.05.001.
Yadav V, Mai Y, McCoubrey LE, Wada Y, Tomioka M, Kawata S, Charde S, Basit AW. 5-aminolevulinic acid as a novel therapeutic for inflammatory bowel disease. Biomedicines, 9, 578 (2021) https://doi.org/10.3390/biomedicines9050578.
Coombes Z, Yadav V, McCoubrey LE, Freire C, Basit AW, Conlan RS, Gonzalez D. Progestogens are metabolized by the gut microbiota: Implications for colonic drug delivery. Pharmaceutics, 12, 760 (2020) https://doi.org/10.3390/pharmaceutics12080760.
Day-Walsh P, Shehata E, Saha S, Savva GM, Nemeckova B, Speranza J, Kellingray L, Narbad A, Kroon PA. The use of an in-vitro batch fermentation (human colon) model for investigating mechanisms of TMA production from choline, l-carnitine and related precursors by the human gut microbiota. Eur J Nutr, 60, 3987–3999 (2021) https://doi.org/10.1007/s00394-021-02572-6.
Ghyselinck J, Verstrepen L, Moens F, Van Den Abbeele P, Bruggeman A, Said J, Smith B, Barker LA, Jordan C, Leta V, Chaudhuri KR, Basit AW, Gaisford S. Influence of probiotic bacteria on gut microbiota composition and gut wall function in an in-vitro model in patients with Parkinson’s disease. Int J Pharm X, 3, 100087 (2021) https://doi.org/10.1016/j.ijpx.2021.100087.
Lemmens G, Van Camp A, Kourula S, Vanuytsel T, Augustijns P. Drug disposition in the lower gastrointestinal tract: targeting and monitoring. Pharmaceutics, 13(2), 161 (2021) https://doi.org/10.3390/pharmaceutics13020161.
Madla CM, Gavins FK, Merchant HA, Orlu M, Murdan S, Basit AW. Let’s talk about sex: Differences in drug therapy in males and females. Adv Drug Deliv Rev, 175, 113804 (2021) https://doi.org/10.1016/j.addr.2021.05.014.
Nascimento-Gonçalves E, Mendes BA, Silva-Reis R, Faustino-Rocha AI, Gama A, Oliveira PA. Animal models of colorectal cancer: From spontaneous to genetically engineered models and their applications. Vet Sci, 8(4), 59 (2021) https://doi.org/10.3390/vetsci8040059.
Zhang Y, Cao J, Lu M, Shao Y, Jiang K, Yang X, Xiong X, Wang S, Chu C, Xue F, Ye Y, Bai J. A biodegradable magnesium surgical staple for colonic anastomosis: In vitro and in vivo evaluation. Bioact Mater, 22, 225-238 (2023) https://doi.org/10.1016/j.bioactmat.2022.09.023.
Nandhra GK, Mark EB, Di Tanna GL, Haase AM, Poulsen J, Christodoulides S, Kung V, Klinge MW, Knudsen K, Borghammer P, Andersen KO, Fynne L, Sutter N, Schlageter V, Krogh K, Drewes AM, Birch M, Scott SM. Normative values for region-specific colonic and gastrointestinal transit times in 111 healthy volunteers using the 3D-Transit electromagnet tracking system: Influence of age, gender, and body mass index. Neurogastroenterol Motil, 32, e13734 (2020) https://doi.org/10.1111/nmo.13734.
Henze L, Koehl N, Bennett-Lenane H, Holm R, Grimm M, Schneider F, Weitschies W, Koziolek M, Griffin B. Characterization of gastrointestinal transit and luminal conditions in pigs using a telemetric motility capsule. European Journal of Pharmaceutical Sciences, 156, 105627 (2021). https://doi.org/10.1016/j.ejps.2020.105627.
Elbadawi M, McCoubrey L, Gavins F, Ong J, Goyanes A, Gaisford S, Basit A. Harnessing artificial intelligence for the next generation of 3D printed medicines. Advanced Drug Delivery Reviews, 175, 113805 (2021). https://doi.org/10.1016/j.addr.2021.05.015.
McCoubrey L, Favaron A, Awad A, Orlu M, Gaisford S, Basit A. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. Journal of Controlled Release, 353, 1107–1126 (2023). https://doi.org/10.1016/j.jconrel.2022.12.029.
Salekeen R, Siam M, Sharif D, Lustgarten M, Billah M, Islam K. In silico insights into potential gut microbial modulation of NAD+ metabolism and longevity. Journal of Biochemical and Molecular Toxicology, 35, e22925 (2021). https://doi.org/10.1002/jbt.22925.
Styliari I, Taresco V, Theophilus A, Alexander C, Garnett M, Laughton C. Nanoformulation-by-design: an experimental and molecular dynamics study for polymer coated drug nanoparticles. RSC Advances, 10, 19521-19533 (2020). https://doi.org/10.1039/d0ra00408a.
Tian X, Yan J, Sun C, Li J, Ning J, Wang C, Huo X, Zhao W, Yu Z, Feng L, Lv X, Ma X. Amentoflavone from Selaginella tamariscina as a potent inhibitor of gut bacterial β-glucuronidase: Inhibition kinetics and molecular dynamics simulation. Chemico-Biological Interactions, 340, 109453 (2021). https://doi.org/10.1016/j.cbi.2021.109453.
Bannigan P, Aldeghi M, Bao Z, Häse F, Aspuru-Guzik A, Allen C. Machine learning directed drug formulation development. Advanced Drug Delivery Reviews, 175, 113806 (2021). https://doi.org/10.1016/j.addr.2021.05.016.
Batra K, Zorn K, Foil D, Minerali E, Gawriljuk V, Lane T, Ekins S. Quantum machine learning algorithms for drug discovery applications. Journal of Chemical Information and Modeling, 61(6), 2641–2647 (2021). https://doi.org/10.1021/acs.jcim.1c00166.
Muñiz Castro B, Elbadawi M, Ong J, Pollard T, Song Z, Gaisford S, Pérez G, Basit A, Cabalar P, Goyanes A. Machine learning predicts 3D printing performance of over 900 drug delivery systems. Journal of Controlled Release, 337, 530–545 (2021). https://doi.org/10.1016/j.jconrel.2021.07.046.
Ong J, Castro B, Gaisford S, Cabalar P, Basit A, Pérez G, Goyanes A. Accelerating 3D printing of pharmaceutical products using machine learning. International Journal of Pharmaceutics, 4, 100120 (2022). https://doi.org/10.1016/j.ijpx.2022.100120.
Zhang J, Petersen S, Radivojevic T, Ramirez A, Pérez-Manríquez A, Abeliuk E, Sánchez B, Costello Z, Chen Y, Fero M, Martin H, Nielsen J, Keasling J, Jensen M. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nature Communications, 11, 4295 (2020). https://doi.org/10.1038/s41467-020-17910-1.
Reker D, Rybakova Y, Kirtane A, Cao R, Yang J, Navamajiti N, Gardner A, Zhang R, Esfandiary T, L’Heureux J, von Erlach T, Smekalova E, Leboeuf D, Hess K, Lopes A, Rogner J, Collins J, Tamang S, Ishida K, Chamberlain P, Yun D, Lytton-Jean A, Soule C, Cheah J, Hayward A, Langer R, Traverso G. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nature Nanotechnology, 16, 725-733 (2021). https://doi.org/10.1038/s41565-021-00870-y.
Abdalla Y, McCoubrey L, Ferraro F, Sonnleitner L, Guinet Y, Siepmann F, Hédoux A, Siepmann J, Basit A, Orlu M, Shorthouse D. Machine learning of Raman spectra predicts drug release from polysaccharide coatings for targeted colonic delivery. Journal of Controlled Release, 374, 103–111 (2024). https://doi.org/10.1016/j.jconrel.2024.08.010.

Published
How to Cite
Issue
Section
Copyright (c) 2025 Ritik Singh Rana, Yogita Ale, Pankaj Pant, Neha Kukreti, Vikash Jakhmola

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.