New information on the etiology and biological targets of wounds associated with diabetes

Authors

  • Niladry S. Ghosh Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, India
  • Anubhav Dubey Department of Pharmacology, Maharana Pratap College of Pharmacy, Kanpur, U.P 209217 India
  • Mamta Kumari Department of Pharmacy, Harcourt Butler Technical University, Kanpur, U.P India

DOI:

https://doi.org/10.69857/joapr.v13i1.812

Keywords:

Wound healing, Diabetes, Pathological changes, Molecular targets, Inflammation

Abstract

Background: Wound healing is a complex process that advances through inflammation, proliferation, and remodelling phases. Diabetes precipitates numerous ailments that obstruct practically all of these reparative processes. Methodology: We performed a literature search on ScienceDirect and PubMed databases using various keywords, including "Diabetes Wound Healing." The search was refined by applying relevant filters to obtain the most pertinent articles for this review article's objective. Results: Patients with diabetes may incur wounds during or after medical interventions. The wound healing process comprises remodelling, proliferation, and inflammation. Diabetes impedes nearly all of these healing processes through various pathological changes. This study primarily examines the molecular pathways of inflammatory substances, including growth stimulants and other factors that hinder wound healing. It also examines molecular targets and the current advancements in wound care and complete healing. Conclusion: Based on our investigation, we identified several practical approaches for treating wound inflammation and proposed that combining these strategies may yield the most significant results in our research domain.

Downloads

Download data is not yet available.

References

Chaudhary JS, Verma R, Chanchal DK, Sahu MS, Mishra SR,Tomar V, et al. Development and optimization of extended-release tablets using biodegradable natural binders for enhanced antidiabetic therapy. Biochemical and Cellular Archives, 24 (2), 575-2579 (2024) https://doi.org/10.51470/BCA.2024.24.2.2575

Dubey A, Kumari M, Kumar V. In vivo antidiabetic activity of asparagus racemosus seeds in streptozotocin induced diabetic model. International Journal of Therapeutic Innovation, 2 (3), 0146–0152 (2024) https://doi.org/10.55522/ijti.V2I3.0037

Driver VR, Fabbi M, Lavery LA, Gibbons G. The costs of diabetic foot: the economic case for the limb salvage team. J Vasc Surg., 52 (6), 17S–22S (2010) https://doi.org/10.1016/j.jvs.2010.06.003

Gorecka J, Kostiuk V, Fereydooni A, Gonzalez L, Luo J, Dash B, Isaji T, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther., 10 (1), 87-100 (2010) https://doi.org/10.1186/s13287-019-1185-1.

Okonkwo UA, DiPietro LA. Diabetes and wound angiogenesis. Int J Mol Sci., 18 (7), 1419 (2017) https://doi.org/10.390/ijms18071419.

Dubey A, Kumari M, Pandey M. Homeopathic Medicinal Products and Importance in Diabetes. International Journal of Homeopathy & Natural Medicines, 10 (1), 17–26 (2024) https://doi.org/10.11648/j.ijhnm.20241001.12

Khushnuma R, Dakshina G, Dubey A, Singh Y. A Review on β-escin. Indian Journal of Medical Research and Pharmaceutical Science, 8 (1), 10-16 (2021) https://doi.org/10.29121/ijmrps.v8.i1.2020.2.

Dash, SL, Gupta P, Dubey A, Sahu VK, & Amit Mishra. An Experimental Models (In-Vivo and In-Vitro) Used for the Study of Antidiabetic agents. Journal of Advanced Zoology, 44 (4), 86–95 (2023) https://doi.org/10.17762/jaz.v44i4.1461

Dubey A, Pandey M, Yadav S, et al. Tripathi Hypolipidemic and haematological effects of ethanolic extract of Tecoma stans linn (bignoniaceae) seeds in alloxan-induced diabetic albino rats. Korean Journal of Physiology and Pharmacology, 27 (3), 85-90 (2023) https://doi.org/10.25463/kjpp.27.1.2023.8.

Dubey A, Ghosh NS, Rathor VPS, Patel S, Patel B, Purohit D. Sars- COV-2 infection leads to neurodegenerative or neuropsychiatric diseases. International Journal of Health Sciences, 6 (S3), 2184–2197 (2022) https://doi.org/10.53730/ijhs.v6nS3.5980

Den Dekker A, Davis FM, Kunkel SL, Gallagher KA. Targeting epigenetic mechanisms in diabetic wound healing. Transl Res., 204 (2), 39–50 (2019) https://doi.org/10.1016/j.trsl.2018.10.001

Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ. Macrophages in skin injury and repair. Immunobiology., 216 (7), 753–762 (2011) https://doi.org/10.1016/j.imbio.2011.01.001.

Boyce DE, Ciampolini J, Ruge F, Murison MS, Harding KG. Inflammatory- cell subpopulations in keloid scars. Br J Plast Surg., 54 (6), 511–516 (2001) https://doi.org/10.1054/bjps.2001.3638.

Mirza RE, Fang MM, Weinheimer-Haus EM, Ennis WJ, Koh TJ. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes., 63 (3), 1103–1114 (2014) https://doi.org/10.2337/db13-0927.

Demidova-Rice TN, Durham JT, Herman IM. Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing. Adv Wound Care (New Rochelle).,1 (2), 17–22 (2012) https://doi.org/10.1089/wound.2011.0308.

Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother., 112 (4), 108615 (2019) https://doi.org/10.1016/j.biopha.2019.108615

Greenhalgh DG. Wound healing and diabetes mellitus. Clin Plast Surg. , 30 (2), 37–45 (2003) https://doi.org/10.1016/s0094-1298(02)00066-4.

Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res., 58 (12), 81–94 (2017) https://doi.org/10.1159/000454919.

Minossi JG, Lima FdeO, Caramori CA, et al. Alloxan diabetes alters the tensile strength, morphological and morphometric parameters of abdominal wall healing in rats. Acta Cir Bras., 29 (2), 118–124 (2014) https://doi.org/10.1590/S0102-86502014000200008.

Berlanga-Acosta J, Schultz GS, López-Mola E, Guillen-Nieto G, García-Siverio M, Herrera-Martínez L. Glucose toxic effects on granulation tissue productive cells: the diabetics’ impaired healing. BioMed Res Int., 20 (12), 256043 (2013) https://doi.org/10.1155/2013/256043

Martin ET, Kaye KS, Knott C, Nguyen H, Santarossa M, Evans R, et al. Diabetes and risk of surgical site infection: a systematic review and meta-analysis. Infect Control Hosp Epidemiol., 37 (1), n88–99 (2016) https://doi.org/10.1017/ice.2015.249.

Kantar RS, Rifkin WJ, Wilson SC, David JA, Diaz-Siso JR, Levine JP, et al. Abdominal panniculectomy: determining the impact of diabetes on complications and risk factors for adverse events. Plast Reconstr Surg., 142 (1), 462e–471e (2018) https://doi.org/10.1097/PRS.0000000000004732.

Kao AM, Arnold MR, Augenstein VA, Heniford BT. Prevention and treatment strategies for mesh infection in abdominal wall reconstruction. Plast Reconstr Surg., 142 (2), 149S–155S (2018) https://doi.org/.1097/PRS.0000000

Chatterjee A, Nahabedian MY, Gabriel A, Macarios D, Parekh M, Wang F, et al. Early assessment of post-surgical outcomes with pre-pectoral breast reconstruction: a literature review and meta-analysis. J Surg Oncol., 117 (6), 1119–1130 (2016) https://doi.org/10.1002/jso.24938

Dortch JD, Eck DL, Ladlie B, Ter Konda SP. Perioperative glycemic control in plastic surgery: review and discussion of an institutional protocol. Aesthet Surg J., 37 (7), 821–830 (2016) https://doi.org/10.1093/asj/sjw064.

Hanemann MS Jr, Grotting JC. Evaluation of preoperative risk factors and complication rates in cosmetic breast surgery. Ann Plast Surg., 64 (5), 537–540 (2010) https://doi.org/10.1097/SAP.0b013e3181cdabf8

Bamba R, Gupta V, Shack RB, Grotting JC, Higdon KK. Evaluation of diabetes mellitus as a risk factor for major complications in patients undergoing aesthetic surgery. Aesthet Surg J., 36 (5), 598–608 (2016) https://doi.org/10.1093/asj/sjv241.

Lipira AB, Sood RF, Tatman PD, Davis JI, Morrison SD, Ko JH. Complications within 30 days of hand surgery: an analysis of 10,646 patients. J Hand Surg Am., 40 (9), 1852–59 (2015) https://doi.org/10.1016/j.jhsa.2015.06.103.

Brown E, Genoway KA. Impact of diabetes on outcomes in hand surgery. J Hand Surg Am., 36 (4), 2067–2072 (2011) https://doi.org/10.1016/j.jhsa.2011.10.002.

Federer AE, Baumgartner RE, Cunningham DJ, Mithani SK. Increased rate of complications following trigger finger release in diabetic patients. Plast Reconstr Surg., 146 (4) ,420e–427e (2020) https://doi.org/10.1097/PRS.0000000000007156

Werner BC, Teran VA, Deal DN. Patient-related risk factors for infection following open carpal tunnel release: an analysis of over 450,000 Medicare patients. J Hand Surg Am., 43 (3), 214–219 (2018) https://doi.org/10.1016/j.jhsa.2017.09.017

Raikundalia M, Svider PF, Hanba C, Folbe AJ, Shkoukani MA, Baredes S, et al. Facial fracture repair and diabetes mellitus: an examination of postoperative complications. Laryngoscope. ,127 (4), 809–814 (2017) https://doi.org/10.1002/lary.26270.

Molnar JA, Vlad LG, Gumus T. Nutrition and chronic wounds: improving clinical outcomes. Plast ReconstrSurg.,138 (7), 71S–81S (2016) https://doi.org/10.1097/PRS.0000000000002676

Zhang S-S, Tang Z-Y, Fang P, Qian H-J, Xu L, Ning G. Nutritional status deteriorates as the severity of diabetic foot ulcers increases and independently associates with prognosis. Exp Ther Med., 5 (1), 215–222 (2013) https://doi.org/10.3892/etm.2012.780.

Dubey Anubhav, Tiwari Mamta, Kumar Vikas, Srivastava, Kshama, Singh, Akanksha. Investigation of Anti-Hyperlipidemic Activity of Vinpocetine in Wistar Rat. International Journal of Pharmaceutical Research, 12 (2), 1879-1882 (2020) https://doi.org/10.31838/ijpr/2020.12.02.250.

Dubey Anubhav, Tiwari M, Singh Yatendra, Kumar N, Srivastava K. Investigation of anti-Pyretic activity of vinpocetine in wistar rat, International Journal of Pharmaceutical Research, 12 (2), 1901-1906 (2020) https://doi.org/10.31838/ijpr/2020.12.02.254.

Van Putte L, De Schrijver S, Moortgat P. The effects of advanced glycation end products (AGEs) on dermal wound healing and scar formation: a systematic review. Scars Burn Heal., 5 (12), 10-25 (2016) https://doi.org/10.1177/2059513116676828

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc., 110 (1) ,911–16.e12S(2010) https://doi.org/1177/205951311574837

Babaei N. Bayat M. Nouruzian M. Bayat. Pentoxifylline improves cutaneous wound healing in streptozotocin-induced diabetic rats. Eur. J. Pharmacol., 700 (1), 165–172 (2013) https://doi.org/10.1016/j.ejphar.2012.11.024

Mallik SB, Jayashree BS, Shenoy RR. Epigenetic modulation of macrophage. polarization- perspectives in diabetic wounds, J. Diabetes Complicat., 32 (2), 524-530 (2018) https://doi.org/10.1016/j.jdiacomp.2018.01.015.

Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D'Amore PA. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing, Am. J. Pathol., 70 (4), 1178–1191 (2007) https://doi.org/10.2353/ajpath.2007.060018

Okizaki S, Ito Y, Hosono K, Oba K, Ohkubo H, Amano H, et al. Suppressed recruitment of alternatively activated macrophages reduces TGF-β1 and impairs wound healing in streptozotocin induced diabetic mice, Biomed. Pharmacother., 70 (3), 317–325 (2017) https://doi.org/10.1016/j.biopha.2014.10.020

Loots MAM, Kenter SB, Au FL, Galen YJMY, Middelkoop E, Bos JD, Mekkes JR. Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF, and PDGF-AB compared to controls, Eur. J. Cell Biol., 81 (3), 153–160 (2002) https://doi.org/10.1078/0171-9335-00228

Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes, J.Clin. Invest., 117 (5), 219–1222 (2007) https://doi.org/10.1172/JCI32169.

Schurmann C, Goren I, Linke A, Pfeilschifter J, Frank S. Deregulated unfolded protein response in chronic wounds of diabetic ob/ob mice: a potential connection to inflammatory and angiogenic disorders in diabetes-impaired wound healing, Biochem. Biophys. Res. Commun., 446 (3), 195–200 (2014) https://doi.org/10.1016/j.bbrc.2014.02.085

Moura J, Børsheim E, Carvalho E. The Role of MicroRNAs in Diabetic Complications-Special Emphasis on Wound Healing. Genes (Basel)., 29 (4), 926-56 (2014) https://doi.org/10.3390/genes5040926.

Biswas S, Roy S, Banerjee J, Hussain SR, Khanna S, Guruguhan M, et al. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci U S A., 13 (4), 6976-81 (2010) https://doi.org/1073/pnas.1001653107.

Chan YC, Roy S, Khanna S, Sen CK. Downregulation of endothelial microRNA-200b supports cutaneous wound angiogenesis by desilencing GATA binding protein 2 and vascular endothelial growth factor receptor 2. Arterioscler Thromb Vasc Biol., 32 (6), 1372-82 (2012) https://doi.org/10.1161/ATVBAHA.112.248583.

Bhattacharya S, Aggarwal R, Singh VP, Ramachandran S, Datta M. Downregulation of miRNAs during Delayed Wound Healing in Diabetes: Role of Dicer. Mol Med., 21 (1), 847-860 (2016) https://doi.org/10.2119/molmed.2014.0018

Icli B, Nabzdyk CS, Lujan-Hernandez J, Cahill M, Auster ME, Wara AK, et al. Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a. J Mol Cell Cardiol., 91 (2), 151-9 (2016) https://doi.org/10.1016/j.yjmcc.2016.01.007.

Li Z, Guo S, Yao F, Zhang Y, Li T. Increased ratio of serum matrix metalloproteinase-9 against TIMP-1 predicts poor wound healing in diabetic foot ulcers. J Diabetes Complications., 27 (4), 380-2 (2013) https://doi.org/10.1016/j.jdiacomp.2012.12.007

Pradhan L, Cai X, Wu S, Andersen ND, Martin M, Malek J, et al. Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic wound healing. J Surg Res., 15 (2), 336-42 (2011) https://doi.org/10.1016/j.jss.2009.09.012.

Verkleij CJ, Roelofs JJ, Havik SR, Meijers JC, Marx PF. The role of thrombin-activatable fibrinolysis inhibitor in diabetic wound healing. Thromb Res., 126 (5), 442-6 (2010) https://doi.org/10.1016/j.thromres.2010.08.008.

Nass N, Vogel K, Hofmann B, Presek P, Silber RE, Simm A. Glycation of PDGF results in decreased biological activity. Int J Biochem Cell Biol., 42 (5), 749-54. (2010) https://doi.org/10.1016/j.biocel.2010.01.012

Gooyit M, Peng Z, Wolter WR, Pi H, Ding D, Hesek D, et al. A chemical biological strategy to facilitate diabetic wound healing. ACS Chem Biol., 17 (9), 105-10. (2014) https://doi.org/10.1021/cb4005468.

Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes., 54 (6), 1615-25(2005) https://doi.org/10.2337/diabetes.54.6.1615.

Niture SK, Jaiswal AK. Inhibitor of Nrf2 (INrf2 or Keap1) protein degrades Bcl-xL via phosphoglycerate mutase 5 and controls cellular apoptosis. J Biol Chem., 286 (52), 44542-56 https://doi.org/10.1074/jbc.M111.275073

Long M, Rojo de la Vega M, Wen Q, Bharara M, Jiang T, et al. An Essential Role of NRF2 in Diabetic Wound Healing. Diabetes, 65 (2), 780-93 (2016) https://doi.org/10.2337/db15-0564.

Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H. Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci., 23 (12), 5187-96 (2003) https://doi.org/10.1523/JNEUROSCI.23-12.

Badr G, Hozzein WN, Badr BM, Al Ghamdi A, et al. Bee Venom Accelerates Wound Healing in Diabetic Mice by Suppressing Activating Transcription Factor-3 (ATF-3) and Inducible Nitric Oxide Synthase (iNOS)-Mediated Oxidative Stress and Recruiting Bone Marrow-Derived Endothelial Progenitor Cells. J Cell Physiol., 23 (10), 2159-71 (2016) https://doi.org/10.1002/jcp.25328.

Badr G. Camel whey protein enhances diabetic wound healing in a streptozotocin-induced diabetic mouse model: the critical role of β-Defensin-1, -2 and -3. Lipids Health Dis., 1 (4), 12-46 (2013) https://doi.org/10.1186/1476-511X-12-46

Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, et al. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res., 29 (8), 881-9 (2005) https://doi.org/10.1161/01.RES.0000163017.13772.3a.

Ishida Y, Gao JL, Murphy PM. Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J Immunol., 18 (2), 569-79. (2008) https://doi.org/10.4049/jimmunol.180.1.569.

Badr G. Supplementation with undenatured whey protein during diabetes mellitus improves the healing and closure of diabetic wounds through the rescue of functional long-lived wound macrophages. Cell Physiol Biochem., 29 (4), 571-82 (2013) https://doi.org/10.1159/000338511.

Raja JM, Maturana MA, Kayali S, Khouzam A, Efeovbokhan N. Diabetic foot ulcer: A comprehensive review of pathophysiology and management modalities. World J Clin Cases., 16 (8), 1684-1693 (2023) https://doi.org/10.12998/wjcc.v11.i8.1684.

Huang H, Cui W, Qiu W, Zhu M, Zhao R, Zeng D, et al. Impaired wound healing results from the dysfunction of the Akt/mTOR pathway in diabetic rats. J Dermatol Sci., 79 (3), 241-51 (2015) https://doi.org/10.1016/j.jdermsci.2015.06.002.

Lima MH, Caricilli AM, de Abreu LL, Araújo EP, Pelegrinelli FF, Thirone AC, et al. Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: a double-blind placebo-controlled clinical trial. PLoS One., 7 (5), e36974 (2012) https://doi.org/10.1371/journal.pone.0036974.

Chong HC, Chan JS, Goh CQ, Gounko NV, Luo B, Wang X, et al. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice. Mol Ther., 22 (9), 1593-604 (2014) https://doi.org/10.1038/mt.2014.102.

Peleg AY, Weerarathna T, McCarthy JS, Davis TM. Common infections in diabetes: pathogenesis, management and relationship to glycaemic control. Diabetes Metab Res Rev., 23 (1), 3-13 (2007) https://doi.org/10.1002/dmrr.682.

Singh K, Agrawal NK, Gupta SK, Mohan G, Chaturvedi S, Singh K. Decreased expression of heat shock proteins may lead to compromised wound healing in type 2 diabetes mellitus patients. J Diabetes Complications., 29 (3), 578-88 (2015) https://doi.org/10.1016/j.jdiacomp.2015.01.007

Singh K, Agrawal NK, Gupta SK, Mohan G, Chaturvedi S, Singh K. Genetic and epigenetic alterations in Toll like receptor 2 and wound healing impairment in type 2 diabetes patients. J Diabetes Complication., 29 (3), 222-9. (2015) https://doi.org/10.1016/j.jdiacomp.2014.11.015

Smith K, Collier A, Townsend EM, O'Donnell LE, Bal AM, Butcher J, et al. One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers. BMC Microbiol., 22 (3), 16-54 (2016) https://doi.org/10.1186/s12866-016-0665-z.

Moura J, Rodrigues J, Gonçalves M, Amaral C, Lima M, Carvalho E. Impaired T-cell differentiation in diabetic foot ulceration. Cell Mol Immunol., 14 (3), 758-769 (2017) https://doi.org/10.1038/cmi.2015.116

Abiko Y, Selimovic D. The mechanism of protracted wound healing on oral mucosa in diabetes. Review. Bosn J Basic Med Sci., 10 (3), 186-91 (2010) https://doi.org/10.17305/bjbms.2010.2683

Nishikori Y, Shiota N, Okunishi H. The role of mast cells in cutaneous wound healing in streptozotocin-induced diabetic mice. Arch Dermatol Res., 35 (9), 309-338 (2014) https://doi.org/0.1007/s00403-014-1496-0

Tellechea A, Leal EC, Kafanas A, Auster ME, Kuchibhotla S, Ostrovsky Y, et al. Mast Cells Regulate Wound Healing in Diabetes. Diabetes., 65 (9), 2006-19 (2016) https://doi.org/10.2337/db15-0340

Bevan D, Gherardi E, Fan TP, Edwards D, Warn R. Dive potent activities of HGF/SF in skin wound repair. J Pathol., 203 (4), 831-8 (2004) https://doi.org/10.1002/path.1578

Grieb G, Simons D, Eckert L, Hemmrich M, Steffens G, Bernhagen J, et al. Levels of macrophage migration inhibitory factor and glucocorticoids in chronic wound patients and their potential interactions with impaired wound endothelial progenitor cell migration. Wound Repair Regen., 20 (10), 707-14 (2012) https://doi.org/10.1111/j.1524-475X.2012.00817.

Ebaid H, Abdel-Salam B, Hassan I, Al-Tamimi J, Metwalli A, Alhazza I. Camel milk peptide improves wound healing in diabetic rats by orchestrating the redox status and immune response. Lipids Health Dis., 24 (10), 101- 132 (2016) https://doi.org/10.1186/s12944-015-0136-9.

Luong M, Zhang Y, Chamberlain T, Zhou T, Wright JF, Dower K, Hall JP. Stimulation of TLR4 by recombinant HSP70 requires structural integrity of the HSP70 protein itself. J Inflamm (Lond)., 26 (3), 9-11 (2012) https://doi.org/10.1186/1476-9255-9-11

Park KH, Han SH, Hong JP, Han SK, Lee DH, Kim BS, et al. Topical epidermal growth factor spray for the treatment of chronic diabetic foot ulcers: A phase III multicenter, double-blind, randomized, placebo-controlled trial. Diabetes Res Clin Pract., 14 (3), 335-344. (2018) https://doi.org/10.1016/j.diabres.2018.06.002

Armstrong DG, Jude EB. The role of matrix metalloproteinases in wound healing, J. Am. Podiatr Med. Assoc., 92 (4), 12-18 (2002) https://doi.org/10.7547/87507315-92-1-12.

Patel S, Srivastava S, Singh MR, & Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomedecine & pharmacotherapie., 112 (4), 108615 (2019) https://doi.org/10.1016/j.biopha.2019.108615

Barret JP, Podmelle F, Lipový B, Rennekampff HO, Schumann H, Schwieger-Briel A, et al. Accelerated re-epithelialization of partial-thickness skin wounds by a topical betulin gel: results of a randomized phase III clinical trials program. Burns., 43 (6), 1284–1294 (2017) https://doi.org/10.1016/j.burns.2017.03.005.

Guo CL, Fu XY. Research on effect evaluation of local treatment of patients with diabetic foot ulcers using honey dressing, Med. J. West China., 20 (7), 977–980 (2013) https://doi.org/10.1111/iwj.14135

Ganesan O, Orgill DP. An Overview of Recent Clinical Trials for Diabetic Foot Ulcer Therapies. J Clin Med., 16 (13), 7655 (2024) https://doi.org/10.3390/jcm13247655.

Published

2025-02-28

How to Cite

Ghosh, N. S. ., Dubey, A. ., & Kumari, M. . (2025). New information on the etiology and biological targets of wounds associated with diabetes. Journal of Applied Pharmaceutical Research, 13(1), 1-13. https://doi.org/10.69857/joapr.v13i1.812

Issue

Section

Articles