Spirulina as functional food: insights into cultivation, production, and health benefits

Authors

  • Akant Kumar Verma Department of Pharmaceutics, Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, 493111, India https://orcid.org/0009-0006-5681-8663
  • Kajal Dewangan Department of Pharmaceutics, Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, 493111, India
  • Leena Daunday Department of Pharmaceutics, Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, 493111, India
  • Kriti Naurange Department of Pharmaceutics, Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, 493111, India
  • Kishan Verma Department of Pharmaceutics, Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, 493111, India
  • Monika Bhiaram Department of Pharmaceutics, Columbia Institute of Pharmacy, Tekari, Raipur, Chhattisgarh, 493111, India

DOI:

https://doi.org/10.69857/joapr.v12i5.788

Keywords:

Spirulina platensis, Superfood, Nutraceuticals, Effective medicine

Abstract

Background: Spirulina (Arthrospira platensis), a filamentous cyanobacterium, is renowned as a superfood due to its rich nutritional composition, including proteins, carbohydrates, essential fatty acids, vitamins, minerals, and phytochemicals. Historically consumed by the Aztecs and the Kanembu people near Lake Chad, it gained renewed interest in the 20th century as a potential astronaut food. Objective: This review aims to trace Spirulina's evolution from an ancient dietary staple to a modern superfood, emphasizing its immune support, antioxidant properties, and essential nutrients. It also highlights ongoing research on Spirulina's potential to address various health concerns and nutritional needs. Method: The review adopts a comprehensive approach to evaluate Spirulina's pharmacological and therapeutic potential. It systematically examines existing literature, research studies, and clinical trials on Spirulina's health benefits and applications, focusing on its ability to combat malnutrition, boost economies, and offer novel therapeutic interventions. Results: Spirulina is identified as a valuable natural resource with significant potential in nutrition and medicine. The review underscores its pharmacological and therapeutic attributes, particularly in addressing malnutrition and contributing to economic development. Conclusion: Spirulina's role as an effective medicinal resource is discussed, highlighting its implications for novel therapeutic interventions. Overall, the findings underscore Spirulina's nutritional significance, enduring appeal, and promising role in tackling contemporary health challenges.  

Downloads

Download data is not yet available.

References

Ovando CA, Carvalho JC de, Vinícius de Melo Pereira G, Jacques P, Soccol VT, Soccol CR. Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Food Rev. Int., 34, 34–51 (2018) https://doi.org/10.1080/87559129.2016.1210632.

Ye C, Mu D, Horowitz N, Xue Z, Chen J, Xue M, Zhou Y, Klutts M, Zhou W. Life cycle assessment of industrial scale production of spirulina tablets. Algal Res., 34, 154–63 (2018) https://doi.org/10.1016/j.algal.2018.07.013.

Bhairam M, Pandey RK, Shukla SS, Gidwani B. Preparation, Optimization, and Evaluation of Dolutegravir Nanosuspension: In Vitro and In Vivo Characterization. J. Pharm. Innov., 18, 1798–811 (2023) https://doi.org/10.1007/s12247-023-09756-z.

Braga ARC, Nunes MC, Raymundo A. The Experimental Development of Emulsions Enriched and Stabilized by Recovering Matter from Spirulina Biomass: Valorization of Residue into a Sustainable Protein Source. Molecules, 28, (2023) https://doi.org/10.3390/molecules28176179.

Costa JAV, Freitas BCB, Rosa GM, Moraes L, Morais MG, Mitchell BG. Operational and economic aspects of Spirulina-based biorefinery. Bioresour. Technol., 292, 121946 (2019) https://doi.org/10.1016/j.biortech.2019.121946.

Chaiklahan R, Chirasuwan N, Loha V, Tia S, Bunnag B. Stepwise extraction of high-value chemicals from Arthrospira (Spirulina) and an economic feasibility study. Biotechnol. Reports, 20, e00280 (2018) https://doi.org/10.1016/j.btre.2018.e00280.

Chaiklahan R, Chirasuwan N, Triratana P, Loha V, Tia S, Bunnag B. Polysaccharide extraction from Spirulina sp. and its antioxidant capacity. Int. J. Biol. Macromol., 58, 73–8 (2013) https://doi.org/10.1016/j.ijbiomac.2013.03.046.

Chaiklahan R, Chirasuwan N, Loha V, Tia S, Bunnag B. Separation and purification of phycocyanin from Spirulina sp. using a membrane process. Bioresour. Technol., 102, 7159–64 (2011) https://doi.org/10.1016/j.biortech.2011.04.067.

Zhou J, Wang M, Barba FJ, Zhu Z, Grimi N. A combined ultrasound + membrane ultrafiltration (USN-UF) process for enhancing saccharides separation from Spirulina (Arthrospira platensis). Innov. Food Sci. Emerg. Technol., 85, 103341 (2023) https://doi.org/10.1016/j.ifset.2023.103341.

Balti R, Zayoud N, Hubert F, Beaulieu L, Massé A. Fractionation of Arthrospira platensis (Spirulina) water soluble proteins by membrane diafiltration. Sep. Purif. Technol., 256, (2021) https://doi.org/10.1016/j.seppur.2020.117756.

Yu Y, Hou X, Yu Q, Huo Y, Wang K, Wen X, Ding Y, Li Y, Wang Z. A novel two-stage culture strategy to enhance the C-phycocyanin productivity and purity of Arthrospira platensis. Lwt, 184, 115010 (2023) https://doi.org/10.1016/j.lwt.2023.115010.

Zhou J, Ran Z, Xu Z, Liu Q, Huang M, Fang L, Guo L. Effects of smoke-water and smoke-isolated karrikinolide on tanshinones production in Salvia miltiorrhiza hairy roots. South African J. Bot., 119, 265–70 (2018) https://doi.org/10.1016/j.sajb.2018.09.005.

Hook I, Sheridan H, Reid C. Trichomes and naphthoquinones protect Streptocarpus dunnii Hook.f. against environmental stresses. South African J. Bot., 119, 193–202 (2018) https://doi.org/10.1016/j.sajb.2018.09.016.

García-López DA, Olguín EJ, González-Portela RE, Sánchez-Galván G, De Philippis R, Lovitt RW, Llewellyn CA, Fuentes-Grünewald C, Parra Saldívar R. A novel two-phase bioprocess for the production of Arthrospira (Spirulina) maxima LJGR1 at pilot plant scale during different seasons and for phycocyanin induction under controlled conditions. Bioresour. Technol., 298, (2020) https://doi.org/10.1016/j.biortech.2019.122548.

Yang Y, Du L, Hosokawa M, Miyashita K. Spirulina lipids alleviate oxidative stress and inflammation in mice fed a high-fat and high-sucrose diet. Mar. Drugs, 18, (2020) https://doi.org/10.3390/md18030148.

Vieira Salla AC, Margarites AC, Seibel FI, Holz LC, Brião VB, Bertolin TE, Colla LM, Costa JAV. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresour. Technol., 209, 133–41 (2016) https://doi.org/10.1016/j.biortech.2016.02.069.

Ramírez-Rodrigues MM, Estrada-Beristain C, Metri-Ojeda J, Pérez-Alva A, Baigts-Allende DK. Spirulina platensis protein as sustainable ingredient for nutritional food products development. Sustain., 13, (2021) https://doi.org/10.3390/su13126849.

J. Carolin Joe Rosario, R. Mary Josephine. Mineral profile of edible algae Spirulina platensis. Int. Curr. .Microbiology .App.Science, 4, 478–83 (2015).

Kerna, Nicholas A UN, Ortigas MAC, Cha S, Wla, Pruitt KD, John, Flores, Holets HM, Carsrud NV, W S, Augh JA. Spirulina Consumption: Concerns Regar ding Contaminants and Uncommon but Possible Adverse Reactions and Interactions. EC Pharmacol. TEC TOXICOLOXICOLOXICOLOXICO, 10, 1–23 (2016) https://doi.org/10.31080/ecpt.2022.10.00693.

Sow S, Ranjan S. Cultivation of Spirulina: An innovative approach to boost up agricultural productivity. Pharma Innov., 10, 799–813 (2021) https://doi.org/10.22271/tpi.2021.v10.i3k.5889.

Habib MAB, Parvin M. A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Food Agric. Organ. United Nations, 1034, 33pp (2008).

Soni RA, Sudhakar K, Rana RS. Spirulina – From growth to nutritional product: A review. Trends Food Sci. Technol., 69, 157–71 (2017) https://doi.org/10.1016/j.tifs.2017.09.010.

de Jesus CS, da Silva Uebel L, Costa SS, Miranda AL, de Morais EG, de Morais MG, Costa JAV, Nunes IL, de Souza Ferreira E, Druzian JI. Outdoor pilot-scale cultivation of Spirulina sp. LEB-18 in different geographic locations for evaluating its growth and chemical composition. Bioresour. Technol., 256, 86–94 (2018) https://doi.org/10.1016/j.biortech.2018.01.149.

Stokes JL. Progress in Industrial Microbiology vol. 1. D. J. D. Hockenhull, Ed. Interscience New York, 1959. 248 pp. Illus. + plates $8. . Science (80-. )., 131, 496–496 (1960) https://doi.org/10.1126/science.131.3399.496.a.

Bharathiraja B, Chakravarthy M, Ranjith Kumar R, Yogendran D, Yuvaraj D, Jayamuthunagai J, Praveen Kumar R, Palani S. Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renew. Sustain. Energy Rev., 47, 634–53 (2015) https://doi.org/10.1016/j.rser.2015.03.047.

AlFadhly NK, Alhelfi N, Altemimi AB, Verma DK, Cacciola F. Tendencies Affecting the Growth and Cultivation of Genus Spirulina: An Investigative Review on Current Trends. Plants, 13, 1–8 (2012).

AlFadhly NKZ, Alhelfi N, Altemimi AB, Verma DK, Cacciola F, Narayanankutty A. Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review. Molecules, 27, 5584 (2022).

Sánchez-Laso J, Espada JJ, Rodríguez R, Vicente G, Bautista LF. Novel Biorefinery Approach for Phycocyanin Extraction and Purification and Biocrude Production from Arthrospira platensis. Ind. Eng. Chem. Res., 62, 5190–8 (2023) https://doi.org/10.1021/acs.iecr.2c03683.

Pandey R, Bhairam M, Shukla SS, Gidwani B. Colloidal and vesicular delivery system for herbal bioactive constituents. DARU, J. Pharm. Sci., 29, 415–38 (2021) https://doi.org/10.1007/s40199-021-00403-x.

Sahin SC. The potential of Arthrospira platensis extract as a tyrosinase inhibitor for pharmaceutical or cosmetic applications. South African J. Bot., 119, 236–43 (2018) https://doi.org/10.1016/j.sajb.2018.09.004.

Suetsuna K, Maekawa K, Chen JR. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J. Nutr. Biochem., 15, 267–72 (2004) https://doi.org/10.1016/j.jnutbio.2003.11.004.

Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch. Toxicol., 90, 1817–40 (2016) https://doi.org/10.1007/s00204-016-1744-5.

Abdel-Daim MM, Farouk SM, Madkour FF, Azab SS. Anti-inflammatory and immunomodulatory effects of Spirulina platensis in comparison to Dunaliella salina in acetic acid-induced rat experimental colitis. Immunopharmacol. Immunotoxicol., 37, 126–39 (2015) https://doi.org/10.3109/08923973.2014.998368.

Vaz B da S, Moreira JB, Morais MG de, Costa JAV. Microalgae as a new source of bioactive compounds in food supplements. Curr. Opin. Food Sci., 7, 73–7 (2016) https://doi.org/10.1016/j.cofs.2015.12.006.

Almeida T, Manfroi G, Silva S, Beggiora P, Schwingel D, Bertolin TE. Exploring the Neuroprotective Effects of Spirulina platensis: Insights Into Hemorrhagic Volume and Histological Outcomes. Cureus, 15, (2023) https://doi.org/10.7759/cureus.42078.

Chaouachi M, Gautier S, Carnot Y, Guillemot P, Pincemail J, Moison Y, Collin T, Groussard C, Vincent S. Spirulina supplementation prevents exercise-induced lipid peroxidation, inflammation and skeletal muscle damage in elite rugby players. J. Hum. Nutr. Diet., 35, 1151–63 (2022) https://doi.org/10.1111/jhn.13014.

Calella P, Cerullo G, Di Dio M, Liguori F, Di Onofrio V, Gallè F, Liguori G. Antioxidant, anti-inflammatory and immunomodulatory effects of spirulina in exercise and sport: A systematic review. Front. Nutr., 9, (2022) https://doi.org/10.3389/fnut.2022.1048258.

Martins AM, Marto JM. A sustainable life cycle for cosmetics: From design and development to post-use phase. Sustain. Chem. Pharm., 35, 101178 (2023) https://doi.org/10.1016/j.scp.2023.101178.

Zhao B, Cui Y, Fan X, Qi P, Liu C, Zhou X, Zhang X. Anti-obesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS One, 14, 1–14 (2019) https://doi.org/10.1371/journal.pone.0218543.

Shiels K, Tsoupras A, Lordan R, Zabetakis I, Murray P, Kumar Saha S. Anti-inflammatory and antithrombotic properties of polar lipid extracts, rich in unsaturated fatty acids, from the Irish marine cyanobacterium Spirulina subsalsa. J. Funct. Foods, 94, 105124 (2022) https://doi.org/10.1016/j.jff.2022.105124.

Kumar A, Ramamoorthy D, Verma DK, Kumar A, Kumar N, Kanak KR, Marwein BM, Mohan K. Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus, 6, 100070 (2022) https://doi.org/10.1016/j.nexus.2022.100070.

Anvar AA, Nowruzi B. Bioactive Properties of Spirulina: A Review. Microb. Bioact., 4, 134–42 (2021) https://doi.org/10.25163/microbbioacts.412117b0719110521.

Villaró S, García-Vaquero M, Morán L, Álvarez C, Cabral EM, Lafarga T. Effect of seawater on the biomass composition of Spirulina produced at a pilot-scale. N. Biotechnol., 78, 173–9 (2023) https://doi.org/10.1016/j.nbt.2023.11.002.

Rahman M, Mamun MA Al, Rathore SS, Nandi SK, Abdul Kari Z, Wei LS, Tahiluddin AB, Rahman MM, Manjappa NK, Hossain A, Nasren S, Alam MMM, Bottje WG, Téllez-Isaías G, Kabir MA. Effects of dietary supplementation of natural Spirulina on growth performance, hemato-biochemical indices, gut health, and disease resistance to Aeromonas hydrophila of Stinging catfish (Heteropneustes fossilis) fingerling. Aquac. Reports, 32, (2023) https://doi.org/10.1016/j.aqrep.2023.101727.

Bax CE, Diaz DA, Li Y, Vazquez T, Patel J, Grinnell M, Ravishankar A, Maddukuri S, Keyes E, Yan D, Bashir M, Werth VP. Herbal supplement Spirulina stimulates inflammatory cytokine production in patients with dermatomyositis in vitro. iScience, 26, 108355 (2023) https://doi.org/10.1016/j.isci.2023.108355.

Bumandalai O, Bayliss KL, Moheimani NR. Innovative processes for combating contaminants in fresh Spirulina. Algal Res., 78, 103397 (2024) https://doi.org/10.1016/j.algal.2024.103397.

Phallis, Thomas by Giustino Varrassi 1,*ORCID, Flaminia Coluzzi 2, 3ORCID, Diego Fornasari 4, Flavio Fusco 5, Walter Gianni 6, Vittorio Andrea Guardamagna 7, Filomena Puntillo 8 9ORCID andGiovanni Sotgiu 10ORCID. Share Announcement Format _ Quote Question _ Answer Thumb _ Up Textsms Share Announcement Format _ Quote Question _ Answer Thumb _ Up Textsms. 1–31 (2016).

Abdel-Daim MM, Abuzead SMM, Halawa SM. Protective Role of Spirulina platensis against Acute Deltamethrin-Induced Toxicity in Rats. PLoS One, 8, (2013) https://doi.org/10.1371/journal.pone.0072991.

Saraswathi K, Kavitha CN. Spirulina: Pharmacological Activities and Health Benefits. J. Young Pharm., 15, 441–7 (2023) https://doi.org/10.5530/jyp.2023.15.59.

Sidorowicz A, Margarita V, Fais G, Pantaleo A, Manca A, Concas A, Rappelli P, Fiori PL, Cao G. Characterization of nanomaterials synthesized from Spirulina platensis extract and their potential antifungal activity. PLoS One, 17, 1–21 (2022) https://doi.org/10.1371/journal.pone.0274753.

Maddiboyina B, Vanamamalai HK, Roy H, Ramaiah, Gandhi S, Kavisri M, Moovendhan M. Food and drug industry applications of microalgae Spirulina platensis: A review. J. Basic Microbiol., 63, 573–83 (2023) https://doi.org/10.1002/jobm.202200704.

Dubey P, Pathak DP, Ali F, Chauhan G, Kalaiselvan V. In-vitro Evaluation of Triazine Scaffold for Anticancer Drug Development: A Review. Curr. Drug Discov. Technol., 21, (2023) https://doi.org/10.2174/1570163820666230717161610.

Han P, Li J, Zhong H, Xie J, Zhang P, Lu Q, Li J, Xu P, Chen P, Leng L, Zhou W. Anti-oxidation properties and therapeutic potentials of spirulina. Algal Res., 55, 102240 (2021) https://doi.org/10.1016/j.algal.2021.102240.

Ghallab DS, Shawky E, Khalifa AA, Ibrahim RS. Insights into the molecular mechanisms of Spirulina platensis against rheumatoid arthritis through integrative serum pharmacochemistry and network pharmacology analysis. Food Biosci., 59, (2024) https://doi.org/10.1016/j.fbio.2024.103902.

Pehlivanov I, Gentscheva G, Nikolova K, Andonova V. Some Applications of Arthrospira platensis and Algae in Pharmaceutical and Food Technologies. Biointerface Res. Appl. Chem., 14, 1–17 (2024) https://doi.org/10.33263/BRIAC142.032.

Munawaroh HSH, Gumilar GG, Pratiwi RN, Khoiriah SF, Ningrum A, Martha L, Chew KW, Show PL. In silico antiviral properties of Spirulina platensis phycobiliprotein and phycobilin as natural inhibitor for SARS-CoV-2. Algal Res., 79, (2024) https://doi.org/10.1016/j.algal.2024.103468.

Fadel NA, Aziz MM, Shafey GM, Rashed RR, Gheita HA. Spirulina as a promising agent in rheumatoid arthritis with no observed hepatic injury. Egypt. Rheumatol., 46, 38–42 (2024) https://doi.org/10.1016/j.ejr.2023.12.001.

Prete V, Abate AC, Di Pietro P, De Lucia M, Vecchione C, Carrizzo A. Beneficial Effects of Spirulina Supplementation in the Management of Cardiovascular Diseases. Nutrients, 16, (2024) https://doi.org/10.3390/nu16050642.

Gronevalt ATM, Bertolin TE, Forcelini CM, Polletto PHM, Pasetti BW, Graeff DB, Rodriguez R, Fornari F. Spirulina Platensis Attenuates Rebound Dyspeptic Symptoms After Proton Pump Inhibitors’ Discontinuation: Phase 2 Placebo-controlled Trial. Altern. Ther. Health Med., 30, (2024).

El-Sharnouby G, Abughoush M, Choudhury I. Novel Development of Pasta Enriched with Spirulina platensis Microalgae: Biochemical and Histological Parameters. Jordan J. Agric. Sci., 20, 48–62 (2024) https://doi.org/10.35516/jjas.v20i1.1142.

Amin M, ul Haq A, Shahid A, Boopathy R, Syafiuddin A. Spirulina as a Food of the Future. Pharm. Nutraceutical Potential Cyanobacteria, 53–83 (2024) https://doi.org/10.1007/978-3-031-45523-0_3.

Ahmed N, Sheikh MA, Ubaid M, Chauhan P, Kumar K, Choudhary S. Comprehensive exploration of marine algae diversity, bioactive compounds, health benefits, regulatory issues, and food and drug applications. Meas. Food, 14, 100163 (2024) https://doi.org/10.1016/j.meafoo.2024.100163.

Deb M. Algal Technology: Current Trend and Future Scope. Algal Farming Syst. From Prod. to Appl. a Sustain. Futur., 3–53 (2024) https://doi.org/10.1201/9781032700359-2.

Chaouachi M, Vincent S, Groussard C. A Review of the Health-Promoting Properties of Spirulina with a Focus on athletes’ Performance and Recovery. J. Diet. Suppl., 21, 210–41 (2024) https://doi.org/10.1080/19390211.2023.2208663.

Elkady OA, Mannaa IM, El Bishbishy MH. Evaluation and formulation of Spirulina platensis proteins for potential applications in hair care products. Discov. Appl. Sci., 6, (2024) https://doi.org/10.1007/s42452-024-05805-5.

Bhairam M, Kumar M, Kalyani G. Development and characterization of novel carbopol based hydrogel formulation containing extract of Eclipta prostrata. J. Appl. Pharmacogn. Phytochem., 4, 32–7 (2024).

Alves JL de B, Costa PCT da, Sales LCS de, Silva Luis CC, Bezerra TPT, Souza MLA, Costa BA, de Souza EL. Shedding light on the impacts of Spirulina platensis on gut microbiota and related health benefits. Crit. Rev. Food Sci. Nutr., 1–7 (2024) https://doi.org/10.1080/10408398.2024.2323112.

Sokary S, Bawadi H, Zakaria ZZ, Al-Asmakh M. The Effects of Spirulina Supplementation on Cardiometabolic Risk Factors: A Narrative Review. J. Diet. Suppl., 21, 527–42 (2024) https://doi.org/10.1080/19390211.2023.2301366.

Rahmatnejad E, Habibi H, Torshizi MAK, Seidavi A, Hosseinian A. Effects of the algae derivatives on performance, intestinal histomorphology, ileal microflora, and egg yolk biochemistry of laying Japanese quail. Poult. Sci., 103, 103605 (2024) https://doi.org/10.1016/j.psj.2024.103605.

Irshad Z, Qasim M, Hajati H, Hosseini SA. “Functional feed for broiler chickens: exploring Spirulina platensis as a nutritional supplement”. Worlds. Poult. Sci. J., 80, 511–25 (2024) https://doi.org/10.1080/00439339.2024.2308230.

Yu J, Liu C, Wang M, Liu Y, Ran L, Yu Z, Ma D, Chen G, Han F, You S, Bi Y, Wu Y. Nutrition and flavor analysis of Spirulina through co-fermentation with Lactobacillus acidophilus and Kluyveromyces marxianus and its effect on attenuating metabolic associated fatty liver disease. J. Funct. Foods, 116, 106149 (2024) https://doi.org/10.1016/j.jff.2024.106149.

Chandrasekhar T, Riazunnisa K, Vijaya Lakshmi D, Anu Prasanna V, Veera Bramhachari P. Exploration of Bioactive Functional Molecules from Marine Algae: Challenges and Applications in Nutraceuticals. Mar. Bioact. Mol. Biomed. Pharmacother. Appl., 187–96 (2023) https://doi.org/10.1007/978-981-99-6770-4_10.

Abu-Zahra NIS, Elseify MM, Atia AA, Al-sokary ET. Impacts of florfenicol on immunity, antioxidant activity, and histopathology of Oreochromis niloticus: a potential protective effect of dietary spirulina platensis. Vet. Res. Commun., 48, 125–38 (2024) https://doi.org/10.1007/s11259-023-10189-9.

Dagsuyu E, Yanardag R. Purification of thioredoxin reductase from Spirulina platensis by affinity chromatography and investigation of kinetic properties. Protein Expr. Purif., 216, 1–7 (2024) https://doi.org/10.1016/j.pep.2023.106417.

Asuku AO, Ayinla MT, Ajibare AJ, Krishnamurthy R. Modulatory and Neuroprotective Roles of Marine Green Spirulina on the Brain and Neurodegeneration. Mar. Greens Environ. Agric. Ind. Biomed. Appl., 189–99 (2024) https://doi.org/10.1201/9781003369738-21.

Tripathi G, Dubey P, Ahmad S, Farooqui A, Mishra V. Role of Algal-derived Bioactive Compounds in Human Health. Recent Pat. Biotechnol., 18, 190–209 (2024) https://doi.org/10.2174/1872208317666230623141740.

Sharoba AM. Spirulina: Functional compounds and health benefits. Plant Second. Metab. Vol. I Biol. Ther. Significance, 243–85 (2017) https://doi.org/10.1201/9781315366326.

Published

2024-10-31

How to Cite

Verma, A. K., Dewangan, K., Daunday, L. ., Naurange, K. ., Verma, K., & Bhiaram, M. (2024). Spirulina as functional food: insights into cultivation, production, and health benefits. Journal of Applied Pharmaceutical Research, 12(5), 28-50. https://doi.org/10.69857/joapr.v12i5.788

Issue

Section

Articles