Bioelectrode based chitosan-nano copper oxide for application to lipase biosensor

Authors

  • A. B. Bodade Nanotechnology Research Laboratory, Department of Chemistry, Shri Shivaji Science College, Amravati M.S-444603
  • M. A. Taiwade Nanotechnology Research Laboratory, Department of Chemistry, Shri Shivaji Science College, Amravati M.S-444603
  • G. N. Chaudhari Nanotechnology Research Laboratory, Department of Chemistry, Shri Shivaji Science College, Amravati M.S-444603

Keywords:

Chitosan (Chit), nano-CuO, bioelectrode, Lipase [LIP], cyclic voltammetry (CV), triglyceride [TG] biosensor

Abstract

Chitosan (Chit)-nanocrystalline CuO composite prepared from Chitosan and CuO nanoparticles by a spin coating method. CuO nanoparticles (45 nm) synthesized by Sol-gel citrate method and characterized by X-Ray diffraction (XRD), Raman spectroscopy, UV-visible spectroscopy, Fourier transform spectroscopy (FTIR) and Scanning electron microscopy (SEM). The electrochemical studies revels that these Chit-nano CuO electrode provide favorable condition for immobilization of enzyme lipase [LIP] specific enzyme for triglyceride detection, resulting in enhanced electron transfer at the interface. The prepared bioelctrode (LIP/Chit-nano CuO/Au bioelectrode) is utilized for triglyceride [TG] sensing using cyclic voltammetry (CV) with hexacyanoferrate as mediator. The electrochemical response studies shows on improved sensing performance of bioelectrode exhibit high sensitivity, low detection limit and good linearity of tributyrin concentration with fast response time. The low value of Michallis-Menten constant indicates high affinity of LIP towards the analyte (tributyrin). The Redox behavior of nano CuO makes an efficient matrix with chitosan for triglyceride [TG] biosensor.                                                         

Downloads

Download data is not yet available.

References

Narang J, Chavhan N and Pundir, Construction of triglyceride biosensor based on nickel oxide-Chitosan Zinc oxide/Zinc hexacyano ferrate film. International journal of Biological macromolecule 2013; 60: 45-51.

Fernandez lafuente. R, Lipase from thermomyces lanuginose: uses and prospects as an industrial biocatalyst. J. of molecular catalysis B: Enzymatic 2010; 62 (3-4): 197-212.

Clellan M.C, Kessler for investigators D, A global analysis of technological change in health care: the case of heart attack. Health aff, 1999; 18 (3): 25-255.

Vijayalakshmi A, Tarunashree Y, Baruwati B, Manoram S, Narayana B, Johnson R and Rao N, Enzyme field effect transistor for estimation of triglyceride using magnetic nanoparticles. Biosensor and Bioelectron 2008; 23 (11):1708-1714.

Fossati. P, Triglyceride determined calorimetrically with an enzyme that produces hydrogen peroxide. clin chemistry, 1982; 28: 2077-80.

Nathell.L, Nathell.L, Almberg.P.M and Larsson.K, COPD diagnosis related to different guidelines and spirometry techniques. Respir.Res. 2007; 8: 89.

Caplan.L.A, Pesce.A.J, Clinical chemistry theory, analysis and correlation Moshy C.V St. Louis, 1989; 481

Fischbach Francis, A manual of laboratory and diagnostic tests six Ed, Lippincott Williams and Wilkins, Philadelphia. 2000.

Solanki P. R, Dhand C, Kaushik A, Anasari A. A, Sood K.N, Malhotra, Nanostructured cerium oxide film for triglyceride sensor. Sens and Actuators B Chem 2009; 141: 551-556.

Li. S. F, Fan. Y. H, Hu. R. F and Wu. W. T, pseudomonas cepacia lipase immobilized onto the electro spun PAN nanofibrous membrane for biodiesel production from soyabean oil. J of molecular catalysis B: Enzymatic 2011;72 (1-2): 40-45

Zhi.M, Xiang.C, Li.J, Wu.N, Nanostructured carbon metal oxide composite electrode for super capacitor: a review. noscale 2015;5(1): 72-88.

Okazaki.M, Komoriya.N, Tomoike.H, Inowe.N, Ttons, Hoosakis,J Chromatogram B. Biomedical sci. Appl.: 1998; 709: 179-87

Bhambim.M, Minakshi, Pundir.C.S, preparation of oxygen metre based biosensor for the determination of triglyceride in serum. Sens.Tras, 2006; 67: 561-7.

Kelly T.A, Kristan.G.D, Amperometric determination of glycerol and TG using an oxygen electrode. Analyst, 1984; 109: 453-6.

Reddy.R.R, Chadha.A, Bhattacharya.E, silicon based potentiometric triglyceride biosensor. Biosens Bioelectron.Biosens.Bioelectron, 2001; 16: 313-17.

Gowan Mc, M.W, Artiss .J.D, Strandbergh, Zak.B, A peroxidase coupled method for the colorimetric determination of serum triglyceride. Clin.chem 1983;29: 538-542.

Solanki P.R, Dhand.C, Kaushik.A, Ansari. A, Sood.K.N, Malhotra.B.D, Nanostructured Cerium oxide film for triglyceride sensor. Sensor and actuators B: Chemical, 2009; 141(2): 551-556.

PauliukaitP, Poherty.A.P, Murnghan.K.D, Brett. E.M, Application of room temperature ionic liquid to the development of electrochemical lipases bio sensing system for water insoluble analysis of analytes. Electrochemical chemistry, 2011; 656 (1-2): 96.

Kayani.zohara,Ali Yasmin,Kiran Faisa,Batool Iffat,Riaz Saira,Naseem Shahzad ,Fabrication of copper oxide nanoparticles by sol gel route.Material today proceding. 2(2015), 5446-5449.

Krajewska Barbara Membrane based processes performed with use of chitin/chitosan materials. seperation and purification technology. 2005; 41: 305-312.

Solanki .S, Pandey.C.M, Soni.A, Sumana.G, Biradar.A.M, An amperometric bienzymatic biosensor for thetriglyceridetributyrin using an indiumtin oxide electrode coated with electrophoretically deposited chitosan-wrapped nanozirconia. MicrochimActa, 2016; 183: 167-176.

J. F. Xu, W. Ji, Z. X. Shen et al., Raman spectra of CuO nanocrystals, “Raman Spectroscopy, 1999; 30, 5: 413–415.

Wang.N, He.H and Han.L, Room temperature preparation of cuprous oxide hollow microspheres by a facile wet-chemical approach. Applied surface science, 2010; 256: 7335-7338.

Swarnkar.R.K, Singh.S.C and Gopal.R, Optical characterization of copper oxide nanomaterial. International conference on optics and photonics 2009.

Zheng.L and Liu.X, Solution phase synthesis of CuO hierarchical nanosheets at near neutral PH and near room temperature. Mater Lett. 2007; 61: 2222-2226.

Kaushik.A, Khan.R, Solanki.P.R, Pandey.P, Alam.J, Ahmad.S and Malhotra.B.D,), Iron oxide nanoparticles –chitosan composite based glucose biosensor. Biosens.Bioelectronics 2008; 24(4):676-683.

Reichman.B, Bard.A.J and Laser.D, A digital simulation model for electrochemical processes Wo3 electrode of Electrochemical society. 1980; 127: 647-.654.

Solanki.P.R, Dhand.C, Kaushik.A, Ansari.A, Sood.K.N, Malhotra.B.D, Nanostructured cerium oxide film for triglyceride sensor. Sensors and actuators: Chemical, 2009; 8, 141: 551-55.

Vidal JC, Garcia-Ruiz E, Castillo JR, Design of a multilayered cholesterol amperometric biosensor for preparation and use in flow system. Electroanalysis. 2001; 13(3): 229-235

Published

2017-01-18

How to Cite

Bodade, A. B., Taiwade, M. A., & Chaudhari, G. N. (2017). Bioelectrode based chitosan-nano copper oxide for application to lipase biosensor. Journal of Applied Pharmaceutical Research, 5(1), 30-39. Retrieved from https://japtronline.com/index.php/joapr/article/view/71

Issue

Section

Articles