Analyzing the mechanisms involved in the antidiabetic activity of some native plants

Authors

  • Lorie Dehury Siksha ‘O’ Anusandhan deemed to be university, Bhubaneswar, Odisha, India
  • Satyapriya Mahapatra Siksha ‘O’ Anusandhan deemed to be university, Bhubaneswar, Odisha, India
  • Anshuman Gauda Siksha ‘O’ Anusandhan deemed to be university, Bhubaneswar, Odisha, India
  • Laxmidhar Maharana Siksha ‘O’ Anusandhan deemed to be university, Bhubaneswar, Odisha, India
  • Ghanshyam Panigrahi Royal College of Pharmacy and Health Sciences, Berhampur, Odisha, India

DOI:

https://doi.org/10.69857/joapr.v12i6.683

Keywords:

Thiobarbituric acid reactive substance, Superoxide dismutase, Dipeptidyl peptidase-4, Glucagon-like peptide-1

Abstract

Background: Research on diabetes treatment is advancing yearly, and it is estimated that 643 million adults worldwide will have diabetes by 2030. This is a comprehensive review of antidiabetic mechanisms in medicinal plants, aims to identify natural antidiabetic plants and provide details on their mechanisms of action, and rigorous testing techniques. Methodology: Information was gathered from offline and online sources to identify indigenous medicinal plants that lower blood glucose. Different databases were searched for ethnopharmacological literature using the following keywords: medicinal plants, diabetes, and India. Other sections about clinical trials, toxicological evaluations of certain plants, and preclinical trials have since been added. These sections were retrieved from Scopus using pertinent keywords. In this study, 117 species of medicinal plants from 55 families that are used to treat diabetes mellitus were listed. Conclusion: The variety of plants discussed in this review clearly demonstrated the importance of herbal plants in the treatment of diabetes. Result of the study shows Fabaceae, Rutaceae, and Combretaceae were the most prevalent plant families and species having antidiabetic properties among these plants. It also gives researchers information that they may use to develop future plans, like finding plants that may be effective in preventing diabetes and isolating bioactive molecules to help manage the disease. More research is necessary to completely comprehend these newly identified anti-diabetic drugs at the molecular, therapeutic, and physiological levels, nevertheless, in order to treat and manage diabetes mellitus globally

Downloads

Download data is not yet available.

References

Ansari MA, Chauhan W, Shoaib S. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. Int J Obes (Lond)., 47(12), 1179-1199 (2023) https://doi.org/10.1038/s41366-023-01369-3.

Kumar A, Gangwar R, Zargar AA, Kumar R, Sharma A. Prevalence of Diabetes in India: A Review of IDF Diabetes Atlas 10th Edition. Curr Diabetes Rev., 20(1), e130423215752 (2024) https://doi.org/10.2174/1573399819666230413094200.

Bagchi A, Pal P. In India, diabetes mellitus is on the rise at an alarming rate: A review. J. Appl. Pharm. Res., 9(2), 01-5 (2021) https://doi.org/10.18231/j.joapr.2021.01.05

Basak M, Laskar MA. Pathophysiology, life style intervention and complications of Type-2 diabetes: A review. J. Appl. Pharm. Res., 12(3), 01-10 (2024) https://doi.org/10.69857/joapr.v12i3.482

Furman BL, Candasamy M, Bhattamisra SK, Veettil SK. Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus; discrepancies in effectiveness between animal and human studies. J Ethnopharmacol., 247, 112264 (2020) https://doi.org/10.1016/j.jep.2019.112264.

Azizah N, Ghifari AA, Adikusuma W, Darmawi, Hamidy MY. Exploring the diverse therapeutic benefits of metformin: from anti-cancer to anti-inflammation and PCOS management. J. Appl. Pharm. Res., 12(4), 1–10 (2024) https://doi.org/10.69857/joapr.v12i4.573.

Nunes CDR, Barreto Arantes M, Menezes de Faria Pereira S, Leandro da Cruz L, de Souza Passos M, Pereira de Moraes L, Vieira IJC, Barros de Oliveira D. Plants as Sources of Anti-Inflammatory Agents. Molecules., 25(16), 3726 (2020) https://doi.org/10.3390/molecules25163726.

Qamar M, Akhtar S, Ismail T. Syzygium cumini (L.) Skeels extracts; in vivo anti-nociceptive, anti-inflammatory, acute and subacute toxicity assessment. J Ethnopharmacol., 287, 114919 (2022) https://doi.org/10.1016/j.jep.2021.114919.

Jeba Malar TRJ, Antonyswamy J, Vijayaraghavan P, Ock Kim Y, Al-Ghamdi AA, Elshikh MS, Hatamleh AA, Al-Dosary MA, Na SW, Kim HJ. In-vitro phytochemical and pharmacological bio-efficacy studies on Azadirachta indica A. Juss and Melia azedarach Linn for anticancer activity. Saudi J Biol Sci., 27(2), 682-688 (2020) https://doi.org/10.1016/j.sjbs.2019.11.024.

Bakul G, Unni VN, Seethaleksmy NV. Acute oxalate nephropathy due to 'Averrhoa bilimbi' fruit juice ingestion. Indian J Nephrol., 23(4), 297-300 (2013) https://doi.org/10.4103/0971-4065.114481.

Barman AK, Mahadi S, Hossain MA. Assessing anti oxidant, antidiabetic potential and GCMS profiling of ethanolic root bark extract of Zanthoxylum rhetsa (Roxb.) DC: Supported by in vitro, in vivo and in silico molecular modeling. PLoS One., 19(8), e0304521 (2024) https://doi.org/10.4103/0971-4065.114481.

Omotoso KS, Aigbe FR, Salako OA, Chijioke MC, Adeyemi OO. Toxicological evaluation of the aqueous whole plant extract of Aerva lanata (l.) Juss. Ex Schult (Amaranthaceae). J Ethnopharmacol., 208, 174-184 (2017) https://doi.org/10.1016/j.jep.2017.06.032.

Almeleebia TM, Alsayari A, Wahab S. Pharmacological and Clinical Efficacy of Picrorhiza kurroa and Its Secondary Metabolites: A Comprehensive Review. Molecules., 27(23), 8316 (2022) https://doi.org/10.3390/molecules27238316.

Xu R, Kuang M, Li N. Phytochemistry and pharmacology of plants in the genus Chaenomeles. Arch Pharm Res., 46(11-12), 825-854 (2023) https://doi.org/10.1007/s12272-023-01475-w.

Wasana KGP, Attanayake AP, Weerarathna TP, Jayatilaka KAPW. Efficacy and safety of a herbal drug of Coccinia grandis (Linn.) Voigt in patients with type 2 diabetes mellitus: A double blind randomized placebo controlled clinical trial. Phytomedicine., 81, 153431 (2021) https://doi.org/10.1016/j.phymed.2020.153431.

Sundaram R, Nandhakumar E, Haseena Banu H. Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Toxicol Mech Methods., 29(9), 644-653 (2019) https://doi.org/10.1080/15376516.2019.1646370.

Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res., 32(6), 985-995 (2018) https://doi.org/10.1002/ptr.6054.

Albeshri A, Baeshen NA, Bouback TA, Aljaddawi AA. A Review of Rhazya stricta Decne Phytochemistry, Bioactivities, Pharmacological Activities, Toxicity, and Folkloric Medicinal Uses. Plants (Basel)., 10(11), 2508 (2021) https://doi.org/10.3390/plants10112508.

Ansari P, Flatt PR, Harriott P, Hannan JMA, Abdel-Wahab YHA. Identification of Multiple Pancreatic and Extra-Pancreatic Pathways Underlying the Glucose-Lowering Actions of Acacia arabica Bark in Type-2 Diabetes and Isolation of Active Phytoconstituents. Plants (Basel)., 10(6), 1190 (2021) https://doi.org/10.3390/plants10061190.

Berlin Grace VM, Wilson D, MD, SV, Siddikuzzaman, & Gopal, R. A New Silver Nano-Formulation of Cassia auriculata Flower Extract and its Anti-Diabetic Effects. Recent patents on nanotechnol., 16(2), 160–169 (2022) https://doi.org/10.2174/1872210515666210329160523.

Nakai S, Fujita M, & Kamei Y. Health Promotion Effects of Soy Isoflavones. J. of nutritional science and vitaminol., 66(6), 502–507 (2020) https://doi.org/10.3177/jnsv.66.502.

Saxena, M., Prabhu, S. V., Mohseen, M., Pal, A. K., Alarifi, S., Gautam, N., & Palanivel, H. Antidiabetic Effect of Tamarindus indica and Momordica charantia and Downregulation of TET-1 Gene Expression by Saroglitazar in Glucose Feed Adipocytes and Their Involvement in the Type 2 Diabetes-Associated Inflammation In Vitro. BioMed research international., 9565136 (2022) https://doi.org/10.1155/2022/9565136.

Mai W, Shang Y, Wang Y, Chen Y, Mu B, Zheng Q, Liu H. 1-DNJ Alleviates Obesity-Induced Testicular Inflammation in Mice Model by Inhibiting IKKβ/ NF-kB Pathway. Reprod Sci., 31(7), 2103-2113 (2024) https://doi.org/10.1007/s43032-024-01502-1.

Ghani U, Nur-E-Alam, M, Yousaf M, Ul-Haq, Z, Noman M, & Al-Rehaily, A. J. Natural flavonoid α-glucosidase inhibitors from Retama raetam: Enzyme inhibition and molecular docking reveal important interactions with the enzyme active site. Bioorg chem., 87, 736–742 (2019) https://doi.org/10.1016/j.bioorg.2019.03.079.

Roozbeh N, Darvish L, Abdi F. Hypoglycemic effects of Acacia nilotica in type II diabetes: a research proposal. BMC Res Notes., 10(1), 331 (2019) https://doi.org/10.1186/s13104-017-2646-1.

Hernández-García E, García A, Garza-González E, et al. Chemical composition of Acacia farnesiana (L) wild fruits and its activity against Mycobacterium tuberculosis and dysentery bacteria. J Ethnopharmacol., 230, 74-80 (2019) https://doi.org/10.1016/j.jep.2018.10.031.

Raptania CN, Zakia S, Fahira AI, Amalia R. Article review: Brazilin as potential anticancer agent. Front Pharmacol., 15, 1355533 (2024) https://doi.org/10.3389/fphar.2024.1355533.

Ahmad W, Amir M, Ahmad A, et al. Aegle marmelos Leaf Extract Phytochemical Analysis, Cytotoxicity, In Vitro Antioxidant and Antidiabetic Activities. Plants (Basel)., 10(12), 2573 (2021) https://doi.org/10.3390/plants10122573.

Kumar D, Ladaniya MS, Gurjar M, Kumar S, Mendke S. Quantification of Flavonoids, Phenols and Antioxidant Potential from Dropped Citrus reticulata Blanco Fruits Influenced by Drying Techniques. Molecules., 26(14), 4159 (2021) https://doi.org/10.3390/molecules26144159.

Dwivedi PSR, Rasal VP, Chavan RS, Khanal P, Gaonkar VP. Insulin sensitization by Feronia elephantum in fructose-induced hyperinsulinemic rats: Insights from computational and experimental pharmacology. J Ethnopharmacol., 316, 116686 (2023) https://doi.org/10.1016/j.jep.2023.116686.

Singh S, Ahuja A, Murti Y, Khaliq A. Phyto-Pharmacological Review on Murraya koenigii (L.) Spreng: As an Indigenous Plant of India with High Medicinal Potential. Chem Biodivers., 20(7), e202300483 (2023) https://doi.org/10.1002/cbdv.202300483.

Mohanty S, Pattnaik A. Ethnobotanical Significance, Phytopharmacology, and Toxicological Profile of Limonia acidissima L. (Rutaceae): A Review. Comb Chem High Throughput Screen., (2024) https://doi.org/10.2174/0113862073285538240417051928.

Patil SM, Bhattacharya S. Cordia Dichotoma: A Comprehensive Review of its Phytoconstituents and Endophytic Fungal Metabolites and their Potential Anticancer Effects. Curr Top Med Chem., 24(3), 201-221 (2024) https://doi.org/10.2174/0115680266277024231113114017.

Galavi A, Hosseinzadeh H, Razavi BM. The effects of Allium cepa L. (onion) and its active constituents on metabolic syndrome: A review. Iran J Basic Med Sci., 24(1), 3-16 (2020) https://doi.org/10.22038/ijbms.2020.46956.10843.

Kumar S, Mittal A, Babu D, Mittal A. Herbal Medicines for Diabetes Management and its Secondary Complications. Curr Diabetes Rev., 17(4), 437-456 (2021) https://doi.org/10.2174/1573399816666201103143225.

Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules., 25(6), 1324 (2020) https://doi.org/10.3390/molecules25061324.

Patil SM, Shirahatti PS, Ramu R. Azadirachta indica A. Juss (neem) against diabetes mellitus: a critical review on its phytochemistry, pharmacology, and toxicology. J Pharm Pharmacol., 74(5), 681-710 (2022) https://doi.org/10.1093/jpp/rgab098.

Thangavel P, Pathak P, Kuttalam I, Lonchin S. Effect of ethanolic extract of Melia dubia leaves on full-thickness cutaneous wounds in Wistar rats. Dermatol Ther., 32(6), e13077 (2019) https://doi.org/10.1111/dth.13077.

Mohammed HS, Abdel-Aziz MM, Abu-Baker MS, Saad AM, Mohamed MA, Ghareeb MA. Antibacterial and Potential Antidiabetic Activities of Flavone C-glycosides Isolated from Beta vulgaris Subspecies cicla L. var. Flavescens (Amaranthaceae) Cultivated in Egypt. Curr Pharm Biotechnol., 20(7), 595-604 (2019) https://doi.org/10.2174/1389201020666190613161212.

Sundaram R, Nandhakumar E, Haseena Banu H. Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Toxicol Mech Methods., 29(9), 644-653 (2019) https://doi.org/10.1080/15376516.2019.

Fan Y, Sahu SK, Yang T. Dissecting the genome of star fruit (Averrhoa carambola L.). Hortic Res., 7(1), 94 (2020) https://doi.org/10.1038/s41438-020-0306-4.

Paul K, Chakraborty S, Mallick P. Supercritical carbon dioxide extracts of small cardamom and yellow mustard seeds have fasting hypoglycaemic effects: diabetic rat, predictive iHOMA2 models and molecular docking study. Br J Nutr., 125(4), 377-388 (2021) https://doi.org/10.1017/S000711452000286X.

Attia ES, Amer AH, Hasanein MA. The hypoglycemic and antioxidant activities of garden cress (Lepidium sativum L.) seed on alloxan-induced diabetic male rats. Nat Prod Res., 33(6), 901-905 (2019) https://doi.org/10.1080/14786419.2017.1413564.

Manivannan A, Kim JH, Kim DS, Lee ES, Lee HE. Deciphering the Nutraceutical Potential of Raphanus sativus-A Comprehensive Overview. Nutrients., 11(2), 402 (2019) https://doi.org/10.3390/nu11020402.

Yang SE, Lin YF, Liao JW. Insulin sensitizer and antihyperlipidemic effects of Cajanus cajan (L.) millsp. root in methylglyoxal-induced diabetic rats. Chin J Physiol., 65(3), 125-135 (2022) https://doi.org/10.4103/cjp.cjp_88_21.

Durg S, Bavage S, Shivaram SB. Withania somnifera (Indian ginseng) in diabetes mellitus: A systematic review and meta-analysis of scientific evidence from experimental research to clinical application. Phytother Res., 34(5), 1041-1059 (2020) https://doi.org/10.1002/ptr.6589.

Zhao XQ, Guo S, Lu YY, Hua Y, Zhang F, Yan H, Shang EX, Wang HQ, Zhang WH, Duan JA. Lycium barbarum L. leaves ameliorate type 2 diabetes in rats by modulating metabolic profiles and gut microbiota composition. Biomed Pharmacother., 121, 109559 (2020) https://doi.org/10.1016/j.biopha.2019.109559.

Aldahr MHS, Abd El-Kader SM. Impact of exercise on renal function, oxidative stress, and systemic inflammation among patients with type 2 diabetic nephropathy. Afr Health Sci., 22(3), 286-295 (2022) https://doi.org/10.4314/ahs.v22i3.30.

Yang J, Sun Y, Cao F, Yang B, Kuang H. Natural Products from Physalis alkekengi L. var. franchetii (Mast.) Makino: A Review on Their Structural Analysis, Quality Control, Pharmacology, and Pharmacokinetics. Molecules., 27(3), 695 (2022) https://doi.org/10.3390/molecules27030695.

Liang W, Lan Y, Chen C. Modulating effects of capsaicin on glucose homeostasis and the underlying mechanism. Crit Rev Food Sci Nutr., 63(19), 3634-3652 (2023) https://doi.org/10.1080/10408398.2021.1991883.

Alkreathy HM, Ahmad A. Catharanthus roseus Combined with Ursolic Acid Attenuates Streptozotocin-Induced Diabetes through Insulin Secretion and Glycogen Storage. Oxid Med Cell Longev., 8565760 (2020) https://doi.org/10.1155/2020/8565760.

Yu T, Lu K, Cao X. The Effect of Cinnamon on Glycolipid Metabolism: A Dose-Response Meta-Analysis of Randomized Controlled Trials. Nutrients., 15(13), 2983 (2023) https://doi.org/10.3390/nu15132983.

Zare R, Nadjarzadeh A, Zarshenas MM, Shams M, Heydari M. Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial. Clin Nutr., 38(2), 549-556 (2019) https://doi.org/10.1016/j.clnu.2018.03.003.

Singh N, Yadav SS, Kumar S, Narashiman B. A review on traditional uses, phytochemistry, pharmacology, and clinical research of dietary spice Cuminum cyminum L. Phytother Res., 35(9), 5007-5030 (2021) https://doi.org/10.1002/ptr.7133.

Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic Properties of Curcumin I: Evidence from In Vitro Studies. Nutrients., 12(1), 118 (2020) https://doi.org/10.3390/nu12010118.

Matin M, Joshi T, Wang D. Effects of Ginger (Zingiber officinale) on the Hallmarks of Aging. Biomolecules., 14(8), 940 (2024) https://doi.org/10.3390/biom14080940.

Lee DW, Kim KM, Park S, An SH, Lim YJ, Jang WG. Eucalyptol induces osteoblast differentiation through ERK phosphorylation in vitro and in vivo. J Mol Med (Berl)., 101(9), 1083-1095 (2023) https://doi.org/10.1007/s00109-023-02348-x.

Liu H, Wei S, Shi L, Tan H. Preparation, structural characterization, and bioactivities of polysaccharides from Psidium guajava: A review. Food Chem., 411, 135423 (2023) https://doi.org/10.1016/j.foodchem.2023.135423.

Romadlon DS, Hasan F, Wiratama BS, Chiu HY. Prevalence and risk factors of fatigue in type 1 and type 2 diabetes: A systematic review and meta-analysis. J Nurs Scholarsh., 54(5), 546-553 (2022) https://doi.org/10.1111/jnu.12763.

Maroyi A. Review of Ethnomedicinal, Phytochemical and Pharmacological Properties of Lannea schweinfurthii (Engl.) Engl. Molecules., 24(4), 732 (2019) https://doi.org/10.3390/molecules24040732.

Maiti S, Ali KM, Jana K, Chatterjee K, De D, Ghosh D. Ameliorating effect of mother tincture of Syzygium jambolanum on carbohydrate and lipid metabolic disorders in streptozotocin-induced diabetic rat: Homeopathic remedy. J Nat Sci Biol Med., 4(1), 68-73 (2013) https://doi.org/10.4103/0976-9668.107263.

Bronczek GA, Soares GM, Marmentini C, Boschero AC, Costa-Júnior JM. Resistance Training Improves Beta Cell Glucose Sensing and Survival in Diabetic Models. Int J Mol Sci., 23(16), 9427 (2022) https://doi.org/10.3390/ijms23169427.

El Ghouizi A, Ousaaid D, Laaroussi H, et al. Ficus carica (Linn.) Leaf and Bud Extracts and Their Combination Attenuates Type-1 Diabetes and Its Complications via the Inhibition of Oxidative Stress. Foods., 12(4), 759 (2023) https://doi.org/10.3390/foods12040759.

Deepa P, Sowndhararajan K, Kim S, Park SJ. A role of Ficus species in the management of diabetes mellitus: A review. J Ethnopharmacol., 215, 210-232 (2022) https://doi.org/10.1016/j.jep.2017.12.045.

Choi DW, Cho SW, Lee SG, Choi CY. The Beneficial Effects of Morusin, an Isoprene Flavonoid Isolated from the Root Bark of Morus. Int J Mol Sci., 21(18), 6541 (2020) https://doi.org/10.3390/ijms21186541.

Kaur J, Singh Z, Shah HMS, Mazhar MS, Hasan MU, Woodward A. Insights into phytonutrient profile and postharvest quality management of jackfruit: A review. Crit Rev Food Sci Nutr., 64(19), 6756-6782 (2024) https://doi.org/10.1080/10408398.2023.2174947.

El-Mezayen NS, Abelrazik YR, Khalifa DM. Cross-relationship between COVID-19 infection and anti-obesity products efficacy and incidence of side effects: A cross-sectional study. PLoS One., 19(8), e0309323 (2024) https://doi.org/10.1371/journal.pone.0309323.

Nissanka MC, Weerasekera MM, Dilhari A, Dissanayaka R, Rathnayake S, Wijesinghe GK. Phytomedicinal properties of Hygrophila schulli (Neeramulliya). Iran J Basic Med Sci., 26(9), 979-986 (2023) https://doi.org/10.22038/IJBMS.2023.67965.14877.

Flores-Estrada J, Cano-Martínez A, Vargas-González Á. Hepatoprotective Mechanisms Induced by Spinach Methanolic Extract in Rats with Hyperglycemia-An Immunohistochemical Analysis. Antioxidants (Basel)., 12(11), 2013 (2023) https://doi.org/10.3390/antiox12112013.

Asif A, Ishtiaq S, Kamran SH. UHPLC-QTOF-MS Metabolic Profiling of Marchantia polymorpha and Evaluation of Its Hepatoprotective Activity Using Paracetamol-Induced Liver Injury in Mice. ACS Omega., 8(21), 19037-19046 (2023) https://doi.org/10.1021/acsomega.3c01867.

Kim SK, Jung J, Jung JH. Hypoglycemic efficacy and safety of Momordica charantia (bitter melon) in patients with type 2 diabetes mellitus. Complement Ther Med., 52, 102524 (2020) https://doi.org/10.1016/j.ctim.2020.102524.

Kabir N, Umar IA, Dama HA, James DB, Inuwa HM. Isolation and Structural Elucidation of Novel Antidiabetic Compounds from Leaves of Momordica balsamina Linn and Leptadenia hastata (Pers) Decne. Iran J Pharm Res., 20(2), 390-402 (2021) https://doi.org/10.22037/ijpr.2020.113632.14440.

Ramalhete C, Gonçalves BMF, Barbosa F, Duarte N, Ferreira MU. Momordica balsamina: phytochemistry and pharmacological potential of a gifted species. Phytochem Rev., 21(2), 617-646 (2022) https://doi.org/10.1007/s11101-022-09802-7.

Srivastava S, Virmani T, Haque MR. Extraction, HPTLC Analysis and Antiobesity Activity of Jatropha tanjorensis and Fraxinus micrantha on High-Fat Diet Model in Rats. Life (Basel)., 13(6), 1248 (2023) https://doi.org/10.3390/life13061248.

Wijewardhana U, Jayasinghe M, Wijesekara I, Ranaweera KKDS. Zingiber officinale, Phyllanthus emblica, Cinnamomum verum, and Curcuma longa to Prevent Type 2 Diabetes: An Integrative Review. Curr Diabetes Rev., 19(8), e241122211183 (2023) https://doi.org/10.2174/1573399819666221124104401.

Chauhan N, Kumar M, Kumar K, Chopra S, Bhatia A. Exploring Innovative Approaches in Type-2 Diabetes Management: A Comprehensive Review on Nano-carriers and Transdermal Drug Delivery. Curr Pharm Des., 30(22), 1725-1745 (2024) https://doi.org/10.2174/0113816128313325240513113840.

Aswal S, Kumar A, Chauhan A, Semwal RB, Kumar A, Semwal DK. A Molecular Approach on the Protective Effects of Mangiferin Against Diabetes and Diabetes-related Complications. Curr Diabetes Rev., 16(7), 690-698 (2022) https://doi.org/10.2174/1573399815666191004112023.

Liu H, Wei S, Shi L, Tan H. Preparation, structural characterization, and bioactivities of polysaccharides from Psidium guajava: A review. Food Chem., 411, 135423 (2023) https://doi.org/10.1016/j.foodchem.2023.135423.

Hamad Al-Mijalli S, ELsharkawy ER, Abdallah EM. Determination of Volatile Compounds of Mentha piperita and Lavandula multifida and Investigation of Their Antibacterial, Antioxidant, and Antidiabetic Properties. Evid Based Complement Alternat Med., 9306251 (2022) https://doi.org/10.1155/2022/9306251.

Tran N, Pham B, Le L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biology (Basel)., 9(9), 252 (2020) https://doi.org/10.3390/biology9090252.

Rattray RD, Van Wyk BE. The Botanical, Chemical and Ethnobotanical Diversity of Southern African Lamiaceae. Molecules., 26(12), 3712 (2021) https://doi.org/10.3390/molecules26123712.

Saleh AA, Hamed S, Hassan AM. Productive Performance, Ovarian Follicular Development, Lipid Peroxidation, Antioxidative Status, and Egg Quality in Laying Hens Fed Diets Supplemented with Salvia officinalis and Origanum majorana Powder Levels. Animals (Basel)., 11(12), 3513 (2021) https://doi.org/10.3390/ani11123513.

Njapndounke B, Dandji Saah MB, Foko Kouam ME, Boungo GT, Ngoufack FZ. Optimum biscuit from Musa sapientum L. and Vigna unguiculata L. composite flour: effect on pancreatic histology, biochemical and hematological parameters of diabetic rats. Heliyon., 7(9), e07987 (2021) https://doi.org/10.1016/j.heliyon.2021.e07987.

Ahmed OM, Abd El-Twab SM, Al-Muzafar HM, Adel Amin K, Abdel Aziz SM, Abdel-Gabbar M. Musa paradisiaca L. leaf and fruit peel hydroethanolic extracts improved the lipid profile, glycaemic index and oxidative stress in nicotinamide/streptozotocin-induced diabetic rats. Vet Med Sci., 7(2), 500-511 (2021) https://doi.org/10.1002/vms3.389.

Kim DY, Kim SR, Jung UJ. Myricitrin Ameliorates Hyperglycaemia, Glucose Intolerance, Hepatic Steatosis, and Inflammation in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. Int J Mol Sci., 21(5), 1870. (2020) https://doi.org/10.3390/ijms21051870.

Hadi V, Pahlavani N, Malekahmadi M. Nigella sativa in controlling Type 2 diabetes, cardiovascular, and rheumatoid arthritis diseases: Molecular aspects. J Res Med Sci., 26, 20 (2021) https://doi.org/10.4103/jrms.JRMS_236_20.

Parra-Naranjo A, Delgado-Montemayor C, Salazar-Aranda R, Waksman-Minsky N. Bioactivity of the Genus Turnera: A Review of the Last 10 Years. Pharmaceuticals (Basel)., 16(11), 1573 (2023) https://doi.org/10.3390/ph16111573.

Tabrizi R, Sekhavati E, Nowrouzi-Sohrabi P. Effects of Urtica dioica on Metabolic Profiles in Type 2 Diabetes: A Systematic Review and Meta-analysis of Clinical Trials. Mini Rev Med Chem. 22(3), 550-563 (2022) https://doi.org/10.2174/1389557521666210929143112.

Kopystecka A, Kozioł I, Radomska D, Bielawski K, Bielawska A, Wujec M. Vaccinium uliginosum and Vaccinium myrtillus-Two Species-One Used as a Functional Food. Nutrients., 15(19), 4119 (2023) https://doi.org/10.3390/nu15194119.

Haghani F, Arabnezhad MR, Mohammadi S, Ghaffarian-Bahraman A. Aloe vera and Streptozotocin-Induced Diabetes Mellitus. Rev Bras Farmacogn., 32(2), 174-187 (2023) https://doi.org/10.1007/s43450-022-00231-3.

Phoswa WN, Mokgalaboni K. Comprehensive Overview of the Effects of Amaranthus and Abelmoschus esculentus on Markers of Oxidative Stress in Diabetes Mellitus. Life (Basel)., 13(9), 1830 (2023) https://doi.org/10.3390/life13091830.

Martins MDPSC, Oliveira ASDSS, Martins MDCCE. Effects of zinc supplementation on glycemic control and oxidative stress in experimental diabetes: A systematic review. Clin Nutr ESPEN., 51, 28-36 (2022) https://doi.org/10.1016/j.clnesp.2022.08.003.

Escandón-Rivera SM, Mata R, Andrade-Cetto A. Molecules Isolated from Mexican Hypoglycemic Plants: A Review. Molecules., 25(18), 4145 (2020) https://doi.org/10.3390/molecules25184145.

Sharma G, Jangra A, Sihag S, Chaturvedi S, Yadav S, Chhokar V. Bryophyllum pinnatum (Lam.) Oken: unravelling therapeutic potential and navigating toxicity. Physiol Mol Biol Plants., 30(9), 1413-1427 (2024) https://doi.org/10.1007/s12298-024-01509-7.

Wang W, Chen S. Identification and pathogenicity of Aurifilum species (Cryphonectriaceae, Diaporthales) on Terminalia species in Southern China. MycoKeys., 98, 37-58 (2023) https://doi.org/10.3897/mycokeys.98.104719.

Ghosh B, Guidry HJ, Johnston M, Bohnert KA. A Fat-Promoting Botanical Extract From Artemisia scoparia Exerts Geroprotective Effects on Caenorhabditis elegans Life Span and Stress Resistance. J Gerontol A Biol Sci Med Sci., 77(6), 1112-1120 (2022) https://doi.org/10.1093/gerona/glac040.

Li Y, Chen Y, Sun-Waterhouse D. The potential of dandelion in the fight against gastrointestinal diseases: A review. J Ethnopharmacol., 293, 115272 (2022) https://doi.org/10.1016/j.jep.2022.115272.

Li J, Luo J, Chai Y, Guo Y, Tianzhi Y, Bao Y. Hypoglycemic effect of Taraxacum officinale root extract and its synergism with Radix Astragali extract. Food Sci Nutr., 26, 9(4), 2075-2085 (2021) https://doi.org/10.1002/fsn3.2176.

Sheweita SA, ElHady SA, Hammoda HM. Trigonella stellata reduced the deleterious effects of diabetes mellitus through alleviation of oxidative stress, antioxidant- and drug-metabolizing enzymes activities. J Ethnopharmacol., 256, 112821 (2020) https://doi.org/10.1016/j.jep.2020.112821.

Tomkins M, Lawless S, Martin-Grace J, Sherlock M, Thompson CJ. Diagnosis and Management of Central Diabetes Insipidus in Adults. J Clin Endocrinol Metab., 107(10), 2701-2715 (2022) https://doi.org/10.1210/clinem/dgac381.

Wang P, Liu Y, Zhang T. Effects of Root Extract of Morinda officinalis in Mice with High-Fat-Diet/Streptozotocin-Induced Diabetes and C2C12 Myoblast Differentiation. ACS Omega., 6(41), 26959-26968 (2021) https://doi.org/10.1021/acsomega.1c03372.

Onanuga IO, Jegede AI, Offor U, Ogedengbe OO, Naidu ECS, Peter AI, Azu OO. Hypoxis hemerocallidea alters metabolic parameters and hepatic histomorphology in streptozotocin-nicotinamide-induced diabetic male rats under antiretroviral therapy. Arch Med Sci., 16(1), 212-224 (2018) https://doi.org/10.5114/aoms.2018.75220.

Narayanappa MG, Kaipa H, Chinapolaiah A. Exploring gender-based diversity for phenolic and organic acid profiles in the genetic resource of betel vine (Piper betle L.) from India as revealed through high-performance liquid chromatography (HPLC-DAD). 3 Biotech., 14(3), 65 (2024) https://doi.org/10.1007/s13205-023-03907-2.

Jiang Z, Sung J, Wang X. A review on the phytochemistry and pharmacology of the herb Scoparia dulcis L. for the potential treatment of metabolic syndrome. RSC Adv., 11(50), 31235-31259 (2021) https://doi.org/10.1039/d1ra05090g.

Pingali U, Sukumaran D, Nutalapati C. Effect of an aqueous extract of Terminalia chebula on endothelial dysfunction, systemic inflammation, and lipid profile in type 2 diabetes mellitus: A randomized double-blind, placebo-controlled clinical study. Phytother Res., 34(12), 3226-3235 (2020) https://doi.org/10.1002/ptr.6771.

Guo Y, Chen X, Gong P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. Int J Biol Macromol., 183, 1753-1773 (2021) https://doi.org/10.1016/j.ijbiomac.2021.05.139.

Sehim AE, Amin BH, Yosri M. GC-MS Analysis, Antibacterial, and Anticancer Activities of Hibiscus sabdariffa L. Methanolic Extract: In Vitro and In Silico Studies. Microorganisms.,11(6),1601(2023)https://doi.org/10.3390/microorganisms11061601

Amin AH. Ameliorative effects of Carica papaya extracts against type II diabetes-induced myocardial pathology and dysfunction in albino rats. Environ Sci Pollut Res Int., 28(41), 58232-58240 (2021) https://doi.org/10.1007/s11356-021-14843-0.

Derebe D, Wubetu M, Alamirew A. Hypoglycemic and Antihyperglycemic Activities of 80% Methanol Root Extract of Acanthus polystachyus Delile (Acanthaceae) in Type 2 Diabetic Rats. Clin Pharmacol., 12, 149-157 (2020) https://doi.org/10.2147/CPAA.S273501.

Geng XQ, Pan LC, Sun HQ, Ren YY, Zhu ZY. Structural characterization of a polysaccharide from Abelmoschus esculentus L. Moench (okra) and its hypoglycemic effect and mechanism on type 2 diabetes mellitus. Food Funct., 13(23), 11973-11985 (2022) https://doi.org/10.1039/d2fo02575b.

Shin JY, Cho BO, Park JH. Diospyros lotus leaf extract and its main component myricitrin inhibit itch related IL 6 and IL 31 by suppressing microglial inflammation and microglial mediated astrocyte activation. Mol Med Rep., 30(4), 178 (2024) https://doi.org/10.3892/mmr.2024.13303.

Yao X, Yuan Y, Jing T, Ye S, Wang S, Xia D. Ganoderma lucidum polysaccharide ameliorated diabetes mellitus-induced erectile dysfunction in rats by regulating fibrosis and the NOS/ERK/JNK pathway. Transl Androl Urol., 11(7), 982-995 (2022) https://doi.org/10.21037/tau-22-428.

Jiang T, Wang L, Ma A, et al. The hypoglycaemic and renal protective effects of Grifola frondosa polysaccharides in early diabetic nephropathy. J Food Biochem., 44(12), e13515 (2020) https://doi.org/10.1111/jfbc.13515.

Jamaldeen FN, Sofi G, Fahim MFM, Aleem M, Begum EMGKN. Shahatra (F.parviflora Lam)- a comprehensive review of its ethnopharmacology, phytochemistry and pharmacology. J Ethnopharmacol., 286, 114839 (2022) 114839. https://doi.org/10.1016/j.jep.2021.114839.

Maphetu N, Unuofin JO, Masuku NP, Olisah C, Lebelo SL. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed Pharmacother., 153, 113256 (2022) https://doi.org/10.1016/j.biopha.2022.113256.

Im DS. Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng. Biomolecules., 10(3), 444 (2020) https://doi.org/10.3390/biom10030444.

Bouhrim M, Daoudi NE, Ouassou H. Phenolic Content and Antioxidant, Antihyperlipidemic, and Antidiabetogenic Effects of Opuntia dillenii Seed Oil. Scient World Jour., 5717052 (2020) https://doi.org/10.1155/2020/5717052.

Yang B, Huang J, Jin W, Sun S, Hu K, Li J. Effects of Drying Methods on the Physicochemical Aspects and Volatile Compounds of Lyophyllum decastes. Foods., 11(20), 3249 (2022) https://doi.org/10.3390/foods11203249.

Zakłos-Szyda M, Kowalska-Baron A, Pietrzyk N, Drzazga A, Podsędek A. Evaluation of Viburnum opulus L. Fruit Phenolics Cytoprotective Potential on Insulinoma MIN6 Cells Relevant for Diabetes Mellitus and Obesity. Antioxidants (Basel)., 9(5), 433 (2020) https://doi.org/10.3390/antiox9050433.

Kaur V, Kumar M, Kumar A, Kaur S. Butea monosperma (Lam.) Taub. Bark fractions protect against free radicals and induce apoptosis in MCF-7 breast cancer cells via cell-cycle arrest and ROS-mediated pathway. Drug Chem Toxicol., 43(4), 398-408 (2020) https://doi.org/10.1080/01480545.2018.1497051.

Zhao J, Tostivint I, Xu L, Huang J, Gambotti L, Boffa JJ, Yang M, Wang L, Sun Z, Chen X, Liou-Schischmanoff A, Baumelou A, Ma T, Lu G, Li L, Chen D, Piéroni L, Liu B, Qin X, He W, Wang Y, Gu HF, Sun W. Efficacy of Combined Abelmoschus manihot and Irbesartan for Reduction of Albuminuria in Patients With Type 2 Diabetes and Diabetic Kidney Disease: A Multicenter Randomized Double-Blind Parallel Controlled Clinical Trial. Diabetes Care., 45(7), e113-e115 (2022) https://doi.org/10.2337/dc22-0607.

Published

2024-12-31

How to Cite

Dehury, L. ., Mahapatra, S. ., Gauda, A. ., Maharana, L. ., & Panigrahi, G. . (2024). Analyzing the mechanisms involved in the antidiabetic activity of some native plants. Journal of Applied Pharmaceutical Research, 12(6), 1-20. https://doi.org/10.69857/joapr.v12i6.683

Issue

Section

Articles