Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism, biomarkers and management
DOI:
https://doi.org/10.69857/joapr.v12i6.673Keywords:
Doxorubicin, apoptosis, reactive oxygen speciesAbstract
Background: Doxorubicin (DOX) is a widely used chemotherapeutic agent that is effective against various solid tumors and hematologic malignancies. However, its clinical application is severely limited by dose-dependent cardiotoxicity, which affects nearly 26% of patients. Objective: This review focuses on recent insights into the molecular mechanisms of DOX-induced cardiotoxicity, particularly highlighting the roles of oxidative stress and mitochondrial dysfunction. Methods: We have reviewed and retrieved the relevant information by probing the main keywords in online databases (PubMed, Scopus, Science Direct and Web of Science, etc.). Screening of relevant literature was done to pick suitable content based on the pharmacological profile of DOX. Key biomarkers such as troponins, brain natriuretic peptides (BNP), and atrial natriuretic peptides (ANP) are crucial for early detection of cardiac injury. The overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS), mediated by enzymes like NADPH oxidase and mitochondrial cytochrome c, is central in triggering apoptosis and cardiomyocyte damage. Furthermore, DOX’s impact extends to other organs, notably the liver and kidneys, contributing to systemic toxicity. Conclusion: This review synthesizes current strategies to mitigate DOX-induced cardiotoxicity, including applying antioxidants, liposomal DOX formulations, and emerging nanocarrier technologies designed to enhance therapeutic selectivity. Looking ahead, integrating personalized medicine approaches and developing innovative therapeutic interventions hold promise for balancing DOX's antitumor efficacy with a reduced risk of cardiotoxicity. By addressing critical gaps in our understanding, this review highlights the need for integrative approaches combining biomarker discovery and targeted therapies to optimize patient outcomes and guide future research directions.
Downloads
References
Thorn CF, Oshiro C, Marsh S, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics.,21, 440-446(2011) https://doi.org/10.1097/FPC.0b013e32833ffb56
Basser RL, Green MD. Strategies for prevention of anthracycline cardiotoxicity. Cancer Treat. Rev., 19, 57-77 (1993) https://doi.org/10.1016/0305-7372(93)90027-o
Carvalho C, Santos RX, Cardoso S, et al. Doxorubicin: the good, the bad and the ugly effect. Curr. Med. Chem., 16, 3267-85 (2009) https://doi.org/10.2174/092986709788803312
Afrin H, Salazar CJ, Kazi M, Ahamad SR, Alharbi M, Nurunnabi M. Methods of screening, monitoring and management of cardiac toxicity induced by chemotherapeutics. Chin. Chem. Lett., 33 , 2773-82 (2022) https://doi.org/10.1016/j.cclet.2022.01.011.
Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer., 9, 338-50. https://doi.org/10.1038/nrc2607
Subapriya R, Kumaraguruparan R, Ramachandran CR, Nagini S. Oxidant-antioxidant status in patients with oral squamous cell carcinomas at different intraoral sites. Clin Biochem., 35, 489-93 (2002) https://doi.org/10.1016/s0009-9120(02)00340-5
Quiles JL, Huertas JR, Battino M, Mataix J, Ramı́rez-Tortosa MC. Antioxidant nutrients and adriamycin toxicity. Toxicol., 180, 79-95 (2002) https://doi.org/10.1016/s0300-483x(02)00383-9
Xiao B, Hong L, Cai X, Mei S, Zhang P, Shao L. The true colors of autophagy in doxorubicin induced cardiotoxicity. Oncol. Letters., 18, 2165-72 (2019) https://doi.org/10.3892/ol.2019.10576
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev., 2016,1245049 (2016) https://doi.org/10.1155/2016/1245049
Vitale R, Marzocco S, Popolo A. Role of oxidative stress and inflammation in doxorubicin-induced cardiotoxicity: A brief account. Int. J. Mol. Sci., 25(13), 7477(2022) https://doi.org/10.3390/ijms25137477
Mitry MA, Edwards JG. Doxorubicin induced heart failure: Phenotype and molecular mechanisms. Int. J. Cardiol. Heart Vasc., 10, 17-24 (2016) https://doi.org/10.1016/j.ijcha.2015.11.004
Kamińska K, Cudnoch-Jędrzejewska A. A Review on the Neurotoxic Effects of Doxorubicin. Neurotox. Res., 41, 383-397 (2023) https://doi.org/10.1007/s12640-023-00652-5
Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology., 115, 155-62 (2010) https://doi.org/10.1159/000265166
Fabiani I, Aimo A, Grigoratos C, Castiglione V, Gentile F, Saccaro LF, Arzilli C, Cardinale D, Passino C, Emdin M. Oxidative stress and inflammation: determinants of anthracycline cardiotoxicity and possible therapeutic targets. Heart Fail. Rev., 26, 881-90 (2021) https://doi.org/10.1007/s10741-020-10063-9
Sakata Y, Dong JW, Vallejo JG, Huang CH, Baker JS, Tracey KJ, Tacheuchi O, Akira S, Mann DL. Toll-like receptor 2 modulates left ventricular function following ischemia-reperfusion injury. Am. J. Physiol. Heart. Circ. Physiol., 292, H503-9 (2007) https://doi.org/10.1152/ajpheart.00642.2006
Zhu H, Sarkar S, Scott L, et al. Doxorubicin Redox Biology: Redox Cycling, Topoisomerase Inhibition, and Oxidative Stress. React. Oxyg. Species (Apex)., 1, 189-98 (2016) https://doi.org/10.20455/ros.2016.835
Shi Y, Moon M, Dawood S, McManus B, Liu PP. Mechanisms and management of doxorubicin cardiotoxicity. Herz., 36, 296-305 (2011) https://doi.org/10.1007/s00059-011-3470-3
Cardoso S, Santos RX, Carvalho C, Correia S, Pereira GC, Pereira SS, Oliveira PJ, Santos MS, Proença T, Moreira PI. Doxorubicin increases the susceptibility of brain mitochondria to Ca2+-induced permeability transition and oxidative damage. Free Radic. Biol. Med., 45,1395-1402 (2008) https://doi.org/10.1016/j.freeradbiomed.2008.08.008
Tsang WP, Chau SP, Kong SK, Fung KP, Kwok TT. Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci., 73,2047-58 (2003) https://doi.org/10.1016/s0024-3205(03)00566-6
Ashikawa K, Shishodia S, Fokt I, Priebe W, Aggarwal BB. Evidence that activation of nuclear factor-κB is essential for the cytotoxic effects of doxorubicin and its analogues. Biochem. Pharmacol., 67, 353-64 (2004) https://doi.org/10.1016/j.bcp.2003.08.039
Bien S, Ritter CA, Gratz M, Sperker B, Sonnemann J, Beck JF, Kroemer HK. Nuclear factor-κB mediates up-regulation of cathepsin B by doxorubicin in tumor cells. Mol. Pharmacol., 65, 1092-1102 (2004) https://doi.org/10.1124/mol.65.5.1092
Lefrak EA, Piťha J, Rosenheim S, Gottlieb JA. A clinicopathologic analysis of adriamycin cardiotoxicity, Cancer., 32, 302-14 (1973) https://doi.org/10.1002/1097-0142(197308)32:2<302::aid-cncr2820320205>3.0.co;2-2
Herman E, Mhatre R, Lee IP, Vick J, Waravdekar VS. A comparison of the cardiovascular actions of daunomycin, adriamycin and N-acetyldaunomycin in hamsters and monkeys. Pharmacol., 6, 230-41 (1971) https://doi.org/10.1159/000136248
van Acker SA, Kramer K, Voest EE, Grimbergen JA, Zhang J, van der Vijgh WJ, Bast A, van Acker SA. Doxorubicin-induced cardiotoxicity monitored by ECG in freely moving mice A new model to test potential protectors: A new model to test potential protectors. Cancer Chemother. Pharmacol., 38, 95-101 (1996) https://doi.org/10.1007/s002800050453
Von Hoff DD, Layard MW, Basa P, DAVIS Jr HL, Von Hoff AL, Rozencweig M, Muggia FM. Risk factors for doxorubicin-lnduced congestive heart failure. Ann. Intern. Med. , 91, 710-17 (1979) https://doi.org/10.7326/0003-4819-91-5-710
Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N. Engl. J. Med., 339, 900-5 (1998) https://doi.org/10.1056/NEJM199809243391307
Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer., 97, 2869-79 (2003) https://doi.org/10.1002/cncr.11407
Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer., 97, 2869-79 (2003) https://doi.org/10.1002/cncr.11407
Tu VC, Bahl JJ, Chen QM. Signals of oxidant-induced cardiomyocyte hypertrophy: key activation of p70 S6 kinase-1 and phosphoinositide 3-kinase. J. Pharmacol. Exp. Ther. , 300, 1101-10, (2002) https://doi.org/10.1124/jpet.300.3.1101
Merten KE, Jiang Y, Feng W, Kang YJ. Calcineurin activation is not necessary for Doxorubicin-induced hypertrophy in H9c2 embryonic rat cardiac cells: involvement of the phosphoinositide 3-kinase-Akt pathway. J. Pharmacol. Exp. Ther., 319, 934-40 (2006) https://doi.org/10.1124/jpet.106.108845
Sardão VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB. Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets. Cell. Bio. Toxicol., 25, 227-43 (2009) https://doi.org/10.1007/s10565-008-9070-1
Zordoky BN, El-Kadi AO. Induction of several cytochrome P450 genes by doxorubicin in H9c2 cells. Vascul. Pharmacol., 49, 166-72 (2008) https://doi.org/10.1016/j.vph.2008.07.004
El-Kadi AO, Zordoky BN. Modulation of cardiac and hepatic cytochrome P450 enzymes during heart failure. Curr. Drug Metabol., 9, 122-8 (2008) https://doi.org/10.2174/138920008783571792
Goormaghtigh E, Huart P, Praet M, Brasseur R, Ruysschaert JM. Structure of the adriamycin-cardiolipin complex: role in mitochondrial toxicity. Biophys. Chem., 35, 247-57 (1990) https://doi.org/10.1016/0301-4622(90)80012-v
Berthiaume JM, Wallace KB. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell. Biol. Toxicol., 23, 15-25 (2007) https://doi.org/10.1007/s10565-006-0140-y
Odom AL, Hatwig CA, Stanley JS, Benson AM. Biochemical determinants of adriamycin® toxicity in mouse liver, heart and intestine. Biochem. Pharmacol., 43, 831-36 (1992) https://doi.org/10.1016/0006-2952(92)90250-m
Okoye CN, Koren SA, Wojtovich AP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol., 67, 102926 (2023) https://doi.org/10.1016/j.redox.2023.102926.
Larsson NG, Holme E, Kristiansson B, Oldfors A, Tulinius M. Progressive increase of the mutated mitochondrial DNA fraction in Kearns-Sayre syndrome. Pediatr. Res., 28, 131-36, 1990 https://doi.org/10.1203/00006450-199008000-00011
Lebrecht D, Setzer B, Ketelsen UP, Haberstroh J, Walker UA. Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation., 108, 2423-29 (2003) https://doi.org/10.1161/01.CIR.0000093196.59829.DF
Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J. Mol. Cell. Cardiol., 41,389-405 (2006) https://doi.org/10.1016/j.yjmcc.2006.06.009
Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy: from the cardiotoxic mechanisms to management. Prog. Cardiovasc. Dis., 49, 330-352 (2007) https://doi.org/10.1016/j.pcad.2006.10.002
Renu K, Abilash VG, PB TP, Arunachalam S. Molecular mechanism of doxorubicin-induced cardiomyopathy–An update. Eur. J. Pharmacol., 818, 241-253 (2018) https://doi.org/10.1016/j.ejphar.2017.10.043
Goormaghtigh E, Huart P, Brasseur R, Ruysschaert JM. Mechanism of inhibition of mitochondrial enzymatic complex I–III by adriamycin derivatives. Biochim. Biophys. Acta., 861, 83-94 (1996) https://doi.org/10.1016/0005-2736(86)90374-3
Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y, Hatch GM, Tong Q, Dolinsky VW. Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J. Biol. Chem., 290, 10981–93 (2015) https://doi.org/10.1074/jbc.M114.607960
Schlame M, Rua D, Greenberg ML. The biosynthesis and functional role of cardiolipin. Prog. Lipid Res., 39, 257-88(2000) https://doi.org/10.1016/s0163-7827(00)00005-9
Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 56,185-229 (2004) https://doi.org/10.1124/pr.56.2.6
Goormaghtigh E, Pollakis G, Ruysschaert JM. Mitochondrial membrane modifications induced by adriamycin-mediated electron transport. Biochem. Pharmacol., 32, 889-93 (1983) https://doi.org/10.1016/0006-2952(83)90593-2
Marcillat O, Zhang Y, Davies KJ. Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochem. J., 259, 181-89 (1991) https://doi.org/10.1042/bj2590181
Delemasure S, Vergely C, Zeller M, Cottin Y, Rochette L. Preventing the cardiotoxic effects of anthracyclins. From basic concepts to clinical data. In Annales de cardiologie et d'angeiologie , 5, 104-12 (2006) https://doi.org/10.1016/j.ancard.2006.02.005
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev. 104, 1533-1610 (2024) https://doi.org/10.1152/physrev.00040.2023
Turrens JF. Mitochondrial formation of reactive oxygen species. J. Physiol., 552, 335-44 (2003) https://doi.org/10.1113/jphysiol.2003.049478
Priya LB, Baskaran R, Huang CY, Padma VV. Neferine ameliorates cardiomyoblast apoptosis induced by doxorubicin: possible role in modulating NADPH oxidase/ROS-mediated NFκB redox signaling cascade. Sci Rep., 7, 12283 (2017) https://doi.org/10.1038/s41598-017-12060-9
Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima M, Kawanishi S. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci., 76, 1439-53 (2005) https://doi.org/10.1016/j.lfs.2004.05.040
Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic. Biol. Med. 2009, 47, 333-43. https://doi.org/10.1016/j.freeradbiomed.2009.05.004
Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol., 309, H1453-67 (2015) https://doi.org/10.1152/ajpheart.00554.2015
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol., 13, 1035387 (2022) https://doi.org/10.3389/fphar.2022.1035387
Yu H, Rong W, Yang J, et al. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL): A Novel Biomarker for Prognostic Assessment and Risk Stratification of Acute Pulmonary Embolism. J. Clin. Med., 11, 3908 (2022) https://doi.org/10.3390/jcm11133908
Floros KV, Thomadaki H, Florou D, Talieri M, Scorilas A. Alterations in mRNA expression of apoptosis-related genes BCL2, BAX, FAS, caspase-3, and the novel member BCL2L12 after treatment of human leukemic cell line HL60 with the antineoplastic agent etoposide. Ann. N. Y. Acad. Sci.,1090, 89-97 (2006) https://doi.org/10.1196/annals.1378.009
Liu TJ, Yeh YC, Ting CT, Lee WL, Wang LC, Lee HW, Wang KY, Lai HC, Lai HC. Ginkgo biloba extract 761 reduces doxorubicin-induced apoptotic damage in rat hearts and neonatal cardiomyocytes. Cardiovasc. Res., 80 , 227-35 (2008) https://doi.org/10.1093/cvr/cvn192
Li Y, Yan J, Yang P. The mechanism and therapeutic strategies in doxorubicin-induced cardiotoxicity: Role of programmed cell death. Cell Stress Chaperones., 29, 666-80 (2024) https://doi.org/10.1016/j.cstres.2024.09.001
Liu J, Mao W, Ding B, Liang CS. ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am. J. Physiol. Heart. Circ. Physiol., 295 , H1956-1965 (2008) https://doi.org/10.1152/ajpheart.00407.2008
Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci. Rep.,7 ,44735 (2017) https://doi.org/10.1038/srep44735
Moreira AC, Branco AF, Sampaio SF, Cunha-Oliveira T, Martins TR, Holy J, Oliveira PJ, Sardão VA. Mitochondrial apoptosis-inducing factor is involved in doxorubicin-induced toxicity on H9c2 cardiomyoblasts. Biochim. Biophys. Acta., 1842, 2468-2478 (2014) https://doi.org/10.1016/j.bbadis.2014.09.015
Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett., 307:41-48 (2019) https://doi.org/10.1016/j.toxlet.2019.02.013
Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S. Insights into Doxorubicin-induced Cardiotoxicity: Molecular Mechanisms, Preventive Strategies, and Early Monitoring. Mol. Pharmacol. , 96, 219-32 ( 2019) https://doi.org/10.1124/mol.119.115725
Mancilla TR, Iskra B, Aune GJ. Doxorubicin-Induced Cardiomyopathy in Children. Compr. Physiol., 9, 905-31(2019) https://doi.org/10.1002/cphy.c180017
Zhao Y, He R, Oerther S, Zhou W, Vosough M, Hassan M. Cardiovascular Complications in Hematopoietic Stem Cell Transplanted Patients. J. Pers. Med., 12, 1797 (2022) https://doi.org/10.3390/jpm12111797
Wallace KB. Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc. Toxicol., 7, 101-7 (2007) https://doi.org/10.1007/s12012-007-0008-2
Nicolay K, Fok JJ, Voorhout W, Post JA, de Kruijff B. Cytofluorescence detection of adriamycin-mitochondria interactions in isolated, perfused rat heart Biochim. Biophys. Acta., 887,35-41 (1986) https://doi.org/10.1016/0167-4889(86)90119-9
Fernandez-Chas M, Curtis MJ, Niederer SA. Mechanism of doxorubicin cardiotoxicity evaluated by integrating multiple molecular effects into a biophysical model. Br. J. Pharmacol., 175, 763-81 (2018) https://doi.org/10.1111/bph.14104
Arai M, Tomaru K, Takizawa T, Sekiguchi K, Yokoyama T, Suzuki T, Nagai R. Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits. Mol. Cell Cardiol., 30, 243-54 (1998) https://doi.org/10.1006/jmcc.1997.0588
Kalivendi SV, Konorev EA, Cunningham S, Vanamala SK, Kaji EH, Joseph J, Kalyanaraman B. Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: role of mitochondrial reactive oxygen species and calcium. Biochem. J., 389, 527-39 (2005) https://doi.org/10.1042/BJ20050285
Little GH, Saw A, Bai Y, Dow J, Marjoram P, Simkhovich B, Leeka J, Kedes L, Kloner RA, Poizat C. Critical role of nuclear calcium/calmodulin-dependent protein kinase IIδB in cardiomyocyte survival in cardiomyopathy. J. Biol. Chem., 5284, 24857-68 (2009) https://doi.org/10.1074/jbc.M109.003186
Sag CM, Köhler AC, Anderson ME, Backs J, Maier LS. CaMKII-dependent SR Ca leak contributes to doxorubicin-induced impaired Ca handling in isolated cardiac myocytes. J. Mol. Cell Cardiol., 51, 749-59 (2011) https://doi.org/10.1016/j.yjmcc.2011.07.016
Takaseya T, Ishimatsu M, Tayama E, Nishi A, Akasu T, Aoyagi S. Mechanical unloading improves intracellular Ca2+ regulation in rats with doxorubicin-induced cardiomyopathy. J .Am. Coll. Cardiol., 44, 2239-46 (2004) https://doi.org/10.1016/j.jacc.2004.08.057
Lebrecht D, Kirschner J, Geist A, Haberstroh J, Walker UA. Respiratory chain deficiency precedes the disrupted calcium homeostasis in chronic doxorubicin cardiomyopathy. Cardiovasc. Pathol. , 19, e167-74 (2010) https://doi.org/10.1016/j.carpath.2009.06.006
Agustini FD, Arozal W, Louisa M, Siswanto S, Soetikno V, Nafrialdi N, Suyatna F. Cardioprotection mechanism of mangiferin on doxorubicin-induced rats: Focus on intracellular calcium regulation. Pharm .Biol., 54,1289-97 (2016) https://doi.org/10.3109/13880209.2015.1073750
Gao J, Chen T, Zhao D, Zheng J, Liu Z. Ginkgolide B exerts cardioprotective properties against doxorubicin-induced cardiotoxicity by regulating reactive oxygen species, Akt and calcium signaling pathways in vitro and in vivo. PloS One, 11, e0168219 (2016) https://doi.org/10.1371/journal.pone.0168219
Böhm F, Pernow J. The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc. Res., 76, 8-18 (2007) https://doi.org/10.1016/j.cardiores.2007.06.004
Bien S, Riad A, Ritter CA, Gratz M, Olshausen F, Westermann D, Grube M, Krieg T, Ciecholewski S, Felix SB, Staudt A. The endothelin receptor blocker bosentan inhibits doxorubicin-induced cardiomyopathy. Cancer Res., 67, 10428-435 (2007) https://doi.org/10.1158/0008-5472.CAN-07-1344
Picard P, Smith PJ, Monge JC, Rouleau JL, Nguyen QT, Calderone A, Stewart DJ. Coordinated upregulation of the cardiac endothelin system in a rat model of heart failure. J. Cardiovasc. Pharmacol., 31, S294-297 (1998) https://doi.org/10.1097/00005344-199800001-0008
Sayed‐Ahmed MM, Khattab MM, Gad MZ, Osman AM. Increased plasma endothelin‐1 and cardiac nitric oxide during doxorubicin‐induced cardiomyopathy. Pharmacol. Toxicol. , 89, 140-44 (2001) https://doi.org/10.1034/j.1600-0773.2001.d01-148.x
Suzuki T, Miyauchi T. A novel pharmacological action of ET-1 to prevent the cytotoxicity of doxorubicin in cardiomyocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol., 280, R1399-1406 (2001) https://doi.org/10.1152/ajpregu.2001.280.5.R1399
Schwebe M, Ameling S, Hammer E, Monzel JV, Bonitz K, Budde S, Schult K, Oswald S, Scheuch E, Grube M, Poesch A. Protective effects of endothelin receptor A and B inhibitors against doxorubicin-induced cardiomyopathy. Biochem. Pharmacol., 94, 109-29 (2015) https://doi.org/10.1016/j.bcp.2015.01.014
Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science., 226, 466-8 (1984) https://doi.org/10.1126/science.6093249
Pendleton M, Lindsey RH Jr, Felix CA, Grimwade D, Osheroff N. Topoisomerase II and leukemia. Ann. N. Y. Acad. Sci., 1310, 98-110 (2014) https://doi.org/10.1111/nyas.12358
Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ET. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med., 18 ,1639-42 (2012) https://doi.org/10.1038/nm.2919
van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst. Rev.. 6, 23-28, (2011) https://doi.org/10.1002/14651858.CD003917.pub3
Deng S, Yan T, Jendrny C, Nemecek A, Vincetic M, Gödtel-Armbrust U, Wojnowski L. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer., 14,842 (2014) https://doi.org/10.1186/1471-2407-14-842
Yan T, Deng S, Metzger A, Gödtel-Armbrust U, Porter AC, Wojnowski L. Topoisomerase IIα-dependent and-independent apoptotic effects of dexrazoxane and doxorubicin. Mol. Cancer Ther., 8, 1075-85 (2009) https://doi.org/10.1158/1535-7163.MCT-09-0139
de Oliveira BL, Niederer S. A biophysical systems approach to identifying the pathways of acute and chronic doxorubicin mitochondrial cardiotoxicity. PLoS Comput. Biol., 12, e1005214 (2016) https://doi.org/10.1371/journal.pcbi.1005214
Pointon AV, Walker TM, Phillips KM, Luo J, Riley J, Zhang SD, Parry JD, Lyon JJ, Marczylo EL, Gant TW. Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS One, 5, e12733 (2010) https://doi.org/10.1371/journal.pone.0012733
Bahat A, Gross A. Mitochondrial plasticity in cell fate regulation. J Biol Chem., 294, 13852-63 (2019) https://doi.org/10.1074/jbc.REV118.000828
Nakao M. Epigenetics: interaction of DNA methylation and chromatin. Gene. , 278, 25-31 (2001) https://doi.org/10.1016/s0378-1119(01)00721-1
Jain D. Cardiotoxicity of doxorubicin and other anthracycline derivatives. J. Nucl. Cardiol., 7,53-62 (2000) https://doi.org/10.1067/mnc.2000.103324
Lu P. Monitoring cardiac function in patients receiving doxorubicin. Semin. Nucl. Med., 35,197-201 (2005) https://doi.org/10.1053/j.semnuclmed.2005.02.005
Totzeck M, Aide N, Bauersachs J, Bucerius J, Georgoulias P, Herrmann K, Hyafil F, Kunikowska J, Lubberink M, Nappi C, Rassaf T. Nuclear medicine in the assessment and prevention of cancer therapy-related cardiotoxicity: prospects and proposal of use by the European Association of Nuclear Medicine (EANM). Eur. J. Nucl. Med. Mol. Imaging., 50, 792-812 (2023) https://doi.org/10.1007/s00259-022-05991-7
Hiroe M, Ohta Y, Fujita N, Nagata M, Toyozaki T, Kusakabe K, Sekiguchi M, Marumo F. Myocardial uptake of 111In monoclonal antimyosin Fab in detecting doxorubicin cardiotoxicity in rats. Morphological and hemodynamic findings. Circulation, 86, 1965-72 (1992) https://doi.org/10.1161/01.cir.86.6.1965
Lekakis J, Prassopoulos V, Athanassiadis P, Kostamis P, Moulopoulos S. Doxorubicin-induced cardiac neurotoxicity: study with iodine 123-labeled metaiodobenzylguanidine scintigraphy. J. Nucl. Cardiol., 3, 37-41 (1996) https://doi.org/10.1016/s1071-3581(96)90022-7
Min PK, Lim S, Kang SJ, et al. Targeted ultrasound imaging of apoptosis with annexin a5 microbubbles in acute Doxorubicin-induced cardiotoxicity. J Cardiovasc. Ultrasound., 18,91-97 https://doi.org/10.4250/jcu.2010.18.3.91
Goldstein DS. Sympathetic neuroimaging. Handb. Clin. Neurol., 117,365-70 (2013) https://doi.org/10.1016/B978-0-444-53491-0.00029-8
Laursen AH, Thune JJ, Hutchings M, et al. 123 I-MIBG imaging for detection of anthracycline-induced cardiomyopathy. Clin. Physiol. Funct. Imaging.,38, 176-85 (2018) https://doi.org/10.1111/cpf.12419
Camilli M, Cipolla CM, Dent S, Minotti G, Cardinale DM. Anthracycline Cardiotoxicity in Adult Cancer Patients: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol., 6, 655-77 (2024) https://doi.org/10.1016/j.jaccao.2024.07.016
Unverferth BJ, Magorien RD, Balcerzak SP, Leier CV, Unverferth DV. Early changes in human myocardial nuclei after doxorubicin. Cancer , 52, 215-21 (1983) https://doi.org/10.1002/1097-0142(19830715)52:2<215::aid-cncr2820520206>3.0.co;2-f
Lipshultz SE, Lipsitz SR, Mone SM, Goorin AM, Sallan SE, Sanders SP, Orav EJ, Gelber RD, Colan SD. Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N. Engl. J. Med.,332, 1738-44 (1995) https://doi.org/10.1056/NEJM199506293322602
Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N. Engl. J. Med., 324, 808-15 (1991) https://doi.org/10.1056/NEJM199103213241205
Elmore S. Apoptosis: a review of programmed cell death. Toxico pathol, 35, 495–516. https://doi.org/10.1080/01926230701320337 Panjrath GS, Patel V, Valdiviezo CI, Narula N, Narula J, Jain D. Potentiation of doxorubicin cardiotoxicity by iron loading in a rodent model. J. Am. Coll. Cardiol., 49, 2457-64 (2007) https://doi.org/10.1016/j.jacc.2007.02.060
Darzynkiewicz Z, Galkowski D, Zhao H. Analysis of apoptosis by cytometry using TUNEL assay. Methods, 44, 250-54 (2008) https://doi.org/10.1016/j.ymeth.2007.11.008
Atas E, Kismet E, Kesik V, Karaoglu B, Aydemir G, Korkmazer N, Demirkaya E, Karslioglu Y, Yurttutan N, Unay B, Koseoglu V. Cardiac troponin-I, brain natriuretic peptide and endothelin-1 levels in a rat model of doxorubicin-induced cardiac injury. J. Cancer Res. Ther., 11, 882-86 (2015) https://doi.org/10.4103/0973-1482.144636
Adamcova M, Skarkova V, Seifertova J, Rudolf E. Cardiac Troponins are Among Targets of Doxorubicin-Induced Cardiotoxicity in hiPCS-CMs. Int. J. Mol. Sci., 20, 2638 (2019) https://doi.org/10.3390/ijms20112638
Kısmet E, Varan A, Ayabakan C, Alehan D, Portakal O, Büyükpamukçu M. Serum troponin T levels and echocardiographic evaluation in children treated with doxorubicin. Pediatr Blood Cancer., 42, 220-24 (2004) https://doi.org/10.1002/pbc.10368
Koh E, Nakamura T, Takahashi H. Troponin-T and brain natriuretic peptide as predictors for adriamycin-induced cardiomyopathy in rats. Circ. J., 68, 163-67 (2004) https://doi.org/10.1253/circj.68.163
Clark SJ, Pippon M, Hemsworth S, Newland P, Pizer B. Cardiac troponin T following anthracycline chemotherapy in children and adolescents. J. Chemother., 19, 332-34 (2007) https://doi.org/10.1179/joc.2007.19.3.332
Advani P, Hoyne J, Moreno-Aspita A, Dubin M, Brock S, Harlow C, Chumsri S, Suter T, Blackshear JL. High-sensitivity troponin T and NT-proBNP kinetics in breast cancer chemotherapy. Chemotherapy, 62, 334-38 (2017) https://doi.org/10.1159/000477797
Wang S, Wang Y, Zhang Z, Liu Q, Gu J. Cardioprotective effects of fibroblast growth factor 21 against doxorubicin-induced toxicity via the SIRT1/LKB1/AMPK pathway. Cell Death Dis., 8, e3018 (2017) https://doi.org/10.1038/cddis.2017.410
Nousiainen T, Vanninen E, Jantunen E, Puustinen J, Remes J, Rantala A, Vuolteenaho O, Hartikainen J. Natriuretic peptides during the development of doxorubicin‐induced left ventricular diastolic dysfunction. J. Intern. Med., 251, 228-34 (2002) https://doi.org/10.1046/j.1365-2796.2002.00951.x
Hayakawa Y, Takeda K, Yagita H, Van Kaer L, Saiki I, Okumura K. Differential regulation of Th1 and Th2 functions of NKT cells by CD28 a nd CD40 costimulatory pathways. J. Immunol., 166, 6012-18 (2001) https://doi.org/10.4049/jimmunol.166.10.6012
Daugaard G, Lassen U, Bie P, Pedersen EB, Jensen KT, Abildgaard U, Hesse B, Kjaer A. Natriuretic peptides in the monitoring of anthracycline induced reduction in left ventricular ejection fraction. Eur. J. Heart Fail., 7, 87-93 (2005) https://doi.org/10.1016/j.ejheart.2004.03.009
Lum BL, Svec JM, Torti FM. Doxorubicin: alteration of dose scheduling as a means of reducing cardiotoxicity. Drug Intell. Clin. Pharm., 19, 259-64 (1985) https://doi.org/10.1177/106002808501900403
Tabuchi M, To H, Sakaguchi H, et al. Therapeutic index by combination of adriamycin and docetaxel depends on dosing time in mice. Cancer Res., 65, 8448-54 (2005) https://doi.org/10.1158/0008-5472.CAN-05-1161
Legha SS, Benjamin RS, Mackay B, Yap HY, Wallace S, Ewer M, Blumenschein GR, Freireich EJ. Adriamycin therapy by continuous intravenous infusion in patients with metastatic breast cancer. Cancer, 49, 1762-66 (1982) https://doi.org/10.1002/1097-0142(19820501)49:9<1762::aid-cncr2820490905>3.0.co;2-q
Hortobagyi GN, Frye D, Buzdar AU, Ewer MS, Fraschini G, Hug V, Ames F, Montague E, Carrasco CH, Mackay B, Benjamin RS. Decreased cardiac toxicity of doxorubicin administered by continuous intravenous infusion in combination chemotherapy for metastatic breast carcinoma. Cancer, 63(1), 37-45 (1989) https://doi.org/10.1002/1097-0142(19890101)63:1<37::aid-cncr2820630106>3.0.co;2-z
Moghrabi A, Levy DE, Asselin B, et al. Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood., 109, 896-904 (2007) https://doi.org/10.1182/blood-2006-06-027714
López-Martínez MI, Miguel M, Garcés-Rimón M. Protein and Sport: Alternative Sources and Strategies for Bioactive and Sustainable Sports Nutrition. Front Nutr., 9, 926043 (2022) https://doi.org/10.3389/fnut.2022.926043
Blumberg JB, Frei BB, Fulgoni Iii VL, Weaver CM, Zeisel SH. Impact of frequency of multi-vitamin/multi-mineral supplement intake on nutritional adequacy and nutrient deficiencies in US adults. Nutrients, 9(8), 849 (2017) https://doi.org/10.3390/nu9080849
Choksey A, Timm KN. Cancer Therapy-Induced Cardiotoxicity-A Metabolic Perspective on Pathogenesis, Diagnosis and Therapy. Int. J. Mol. Sci., 23, 441 (2021)https://doi.org/10.3390/ijms23010441
El-Demerdash E, Ali AA, Sayed-Ahmed MM, Osman AM. New aspects in probucol cardioprotection against doxorubicin-induced cardiotoxicity. Cancer Chemother. Pharmacol., 52, 411-16 (2003) https://doi.org/10.1007/s00280-003-0676-y
Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 65, 157-70 (2013) https://doi.org/10.1111/j.2042-7158.2012.01567.x
Tahover E, Patil YP, Gabizon AA. Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: focus on liposomes. Anti-cancer Drugs .,26,241-58 (2015) https://doi.org/10.1097/CAD.0000000000000182
van den Hurk C, Breed W, Dercksen W. Nonpegylated liposomal doxorubicin: reduction in cardiotoxicity, although still severe alopecia. Anti-Cancer Drugs., 26, 687 (2015) https://doi.org/10.1097/CAD.0000000000000239
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. , 65, 36-48 (2013) https://doi.org/10.1016/j.addr.2012.09.037
Barenholz YC. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control Release., 160, 117-34 (2012) https://doi.org/10.1016/j.jconrel.2012.03.020
Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin. Pharmacokinet., 42, 419-36 (2003) https://doi.org/10.2165/00003088-200342050-00002
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 4, 145-60 (2005) https://doi.org/10.1038/nrd1632
Franco YL, Vaidya TR, Ait-Oudhia S. Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer: Targets and Therapy, 11, 131-41 (2018) https://doi.org/10.2147/BCTT.S170239
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS Nano., 15, 2099-2142 (2021) https://doi.org/10.1021/acsnano.0c09382
Reyes BA, Dufourt EC, Ross J, Warner MJ, Tanquilut NC, Leung AB. Selected phyto and marine bioactive compounds: Alternatives for the treatment of type 2 diabetes. Studies Nat Products Chem., 55, 111-43 (2018) https://doi.org/10.1016/B978-0-444-64068-0.00004-8.
Abdel-Daim MM, Kilany OE, Khalifa HA, Ahmed AA. Allicin ameliorates doxorubicin-induced cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Cancer Chemother. Pharmacol., 80, 745-53, 2018 https://doi.org/10.1007/s00280-017-3413-7
Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, Chen N. Anticancer property of ginsenoside Rh2 from ginseng. Eur. J. Med. Chem., 203,112627 (2020) https://doi.org/10.1016/j.ejmech.2020.112627
Rajadurai M, Prince PS. Preventive effect of naringin on cardiac markers, electrocardiographic patterns and lysosomal hydrolases in normal and isoproterenol-induced myocardial infarction in Wistar rats. Toxicology, 230,178-88 (2007) https://doi.org/10.1016/j.tox.2006.11.053
Wang H, Yu P, Gou H, Zhang J, Zhu M, Wang ZH, Tian JW, Jiang YT, Fu FH. Cardioprotective effects of 20 ‐ginsenoside Rh2 against doxorubicin‐induced cardiotoxicity in vitro and in vivo. Evid. Based Complement. Alternat. Med., 2012, 506214 (2012) https://doi.org/10.1155/2012/506214
Perreault AA, Venters BJ. Integrative view on how erythropoietin signaling controls transcription patterns in erythroid cells. Curr. Opin. Hematol., 25, 189-95 (2018) https://doi.org/10.1097/MOH.0000000000000415
Li L, Takemura G, Li Y, Miyata S, Esaki M, Okada H, Kanamori H, Khai NC, Maruyama R, Ogino A, Minatoguchi S. Preventive effect of erythropoietin on cardiac dysfunction in doxorubicin-induced cardiomyopathy. Circulation, 113, 535-43 (2006) https://doi.org/10.1161/CIRCULATIONAHA.105.568402
Ammar HI, Saba S, Ammar RI, Elsayed LA, Ghaly WB, Dhingra S. Erythropoietin protects against doxorubicin-induced heart failure. Int. Cardiovasc. Physiol. Pathophysiol., 301(6), H2413-21 (2011) https://doi.org/10.1152/ajpheart.01096.2010
Cui L, Guo J, Zhang Q, Yin J, Li J, Zhou W, Zhang T, Yuan H, Zhao J, Zhang L, Carmichael PL. Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity. Toxicol. Lett., 275, 28-38 (2017) https://doi.org/10.1016/j.toxlet.2017.04.018
Li K, Sung RY, Huang WZ, Yang M, Pong NH, Lee SM, Chan WY, Zhao H, To MY, Fok TF, Li CK. Thrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin. Circulation, 113, 2211-20 (2006) https://doi.org/10.1161/CIRCULATIONAHA.105.560250
Chan KY, Xiang P, Zhou L, Li K, Ng PC, Wang CC, Zhang L, Deng HY, Pong NH, Zhao H, Chan WY. Thrombopoietin protects against doxorubicin‐induced cardiomyopathy, improves cardiac function, and reversely alters specific signalling networks. Eur. J. Heart Fail., 13, 366-76 (2011) https://doi.org/10.1093/eurjhf/hfr001
Siveski-Iliskovic N, Hill M, Chow DA, Singal PK. Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation 91, 10-15 (1995) https://doi.org/10.1161/01.cir.91.1.10
Li X, Zhong J, Zeng Z, Wang H, Li J, Liu X, Yang X. MiR-181c protects cardiomyocyte injury by preventing cell apoptosis through PI3K/Akt signaling pathway. Cardiovasc. Diagn. Ther., 10, 849-58 (2020) https://doi.org/10.21037/cdt-20-490
Han HS, Koo SY, Choi KY. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioact. Mater., 14, 182-205 (2022) https://doi.org/10.1016/j.bioactmat.2021.11.027
Liu N, Olson EN. CRISPR Modeling and Correction of Cardiovascular Disease. Circ Res., 130, 1827-50 (2022) https://doi.org/10.1161/CIRCRESAHA.122.320496
Aderinto N, Abdulbasit MO, Olatunji G, Edun M, Aboderin G. The promise of RNA-based therapeutics in revolutionizing heart failure management - a narrative review of current evidence. Ann. Med. Surg. (Lond)., 85, 4442-53 (2023) https://doi.org/10.1097/MS9.0000000000001118
Souma T, Suzuki N, Yamamoto M. Renal erythropoietin-producing cells in health and disease. Front. Physiol., 6, 167 (2015) https://doi.org/10.3389/fphys.2015.00167
Ramond A, Sartorius E, Mousseau M, Ribuot C, Joyeux-Faure M. Erythropoietin pretreatment protects against acute chemotherapy toxicity in isolated rat hearts. Exp. Biol. Med., 233, 76-83 (2008) https://doi.org/10.3181/0706-RM-152
Elmorsy EA, Saber S, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, Negm S, Youssef ME. Mechanistic Insights into Carvedilol's Potential Protection Against Doxorubicin-Induced Cardiotoxicity. Eur. J. Pharm. Sci.,200, 106849 (2024) https://doi.org/10.1016/j.ejps.2024.106849

Published
How to Cite
Issue
Section
Copyright (c) 2024 Mohd Amaan, Radha Goel, Surovi Paul, Iqbal Danish

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.