Advancements in smart wearable patch systems for enhanced wound healing
DOI:
https://doi.org/10.69857/joapr.v13i2.667Keywords:
Intelligent patches, smart patches, wound healing, stimuli-responsive dressings, smart sensors,, chronic woundsAbstract
Background: Chronic wounds afflict around 2% of the world's population and cost billions of dollars each year in medical costs. By some estimates, over 13 million people worldwide suffer from chronic wounds yearly. The absence of continuous surveillance in conventional dressings for wounds causes prolongation in the treatment and raises the danger of infection. Timely and practical assessment of wounds is key to reducing infection and healing wounds. This is possible by smart dressings with sensors continuously providing input while monitoring important wound variables involving pH, temperature, and moisture. Considering current and upcoming advancements, this paper examines how intelligent patches could transform healing. Methodology: The latest advances in the development, usage of intelligent patches, and their development by different researchers are highlighted in this review. It looks at how sensors are incorporated into these patches and provides an overview of developing intelligent wound dressings by integrating one or more sensors triggered by endogenous and exogenous stimuli. Results and Discussion: The fabrication and effectiveness of intelligent dressings have advanced significantly, but there are still issues with sensor precision and resilience, especially regarding the requirement for strict regulations. The discussion also explores the critical need to address legal and technological constraints to enhance the usefulness of such wearable gadgets in medical settings. Conclusion: Intelligent patches, a fascinating new development in wound care, enable customized therapy with continuous surveillance. Future studies should address real-world challenges to fully realize their potential to refine wound recovery outcomes in medical care.
Downloads
References
Leal-Junior A, Guo J, Min R, Fernandes AJ, Frizera A, Marques C. Photonic smart bandage for wound healing assessment. Photonics Res, 9(3), 272-80 (2021) https://doi.org/10.1364/PRJ.410168
Zeng Q, Qi X, Shi G, Zhang M, Haick H. Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS nano, 16(2), 1708-33 (2022) https://doi.org/10.1021/acsnano.1c08411
Gupta N, Gupta SK, Shukla VK, Singh SP. An Indian community based epidemiological study of wounds. J.Wound Care, 13(8), 323–59 (2004) https://doi.org/10.12968/jowc.2004.13.8.26657
Cheng S, Gu Z, Zhou L, Hao M, An H, Song K, et al. Recent progress in intelligent wearable sensors for health monitoring and wound healing based on biofluids. Front.Bioeng.Biotechnol, 9, (2021) https://doi.org/10.3389/fbioe.2021.765987
Sen CK. Human wounds and its burden: an updated compendium of estimates. Adv.wound care, 8(2), 39-48 (2019) https://doi.org/10.1089/wound.2019.0946
Vowden K, Vowden P. Wound dressings: principles and practice. Surgery (Oxford), 35(9), 489-94 (2017) https://doi.org/10.1016/j.mpsur.2017.06.005
Michaleas SN, Laios K, Charalabopoulos A, Samonis G, Karamanou M. Joseph Lister. A Pioneer of Antiseptic Surgery. Cureus, 14(12), (2022) https://doi.org/10.7759/cureus.32777
Nguyen HM, Ngoc Le TT, Nguyen AT, Thien Le HN, Pham TT. Biomedical materials for wound dressing: recent advances and applications. RSC Adv, 13(8), 5509-5528 (2023) https://doi.org/10.1039/d2ra07673j
Wang J, Chen Y, Zhou G, Chen Y, Mao C, Yang M. Polydopamine-coated Antheraea pernyi (A. pernyi) silk fibroin films promote cell adhesion and wound healing in skin tissue repair. ACS Appl.Mater.Interfaces, 11(38), 34736-43 (2019) https://doi.org/10.1021/acsami.9b12643
Abdali Z, Logsetty S, Liu S. Bacteria-responsive single and core–shell nanofibrous membranes based on polycaprolactone/poly (ethylene succinate) for on-demand release of biocides. ACS omega, 4(2), 4063-70 (2019) https://doi.org/10.1021/acsomega.8b03137
Zhang Y, Li T, Zhao C, Li J, Huang R, Zhang Q et al. An Integrated Smart Sensor Dressing for Real-Time Wound Microenvironment Monitoring and Promoting Angiogenesis and Wound Healing. Front.Cell Dev.Biol, 9 (2021) https://doi.org/10.3389/fcell.2021.701525
Wu M, Chen J, Huang W, Yan B, Peng Q, Liu J, et al. Injectable and self-healing nano composite hydrogels with ultrasensitive pH-responsiveness and tunable mechanical properties: implications for controlled drug delivery. J.Biol.Macromol, 21(6), 2409-20 (2020) https://doi.org/10.1021/acs.biomac.0c00347
Abul-Husn NS, Kenny EE. Personalized medicine and the power of electronic health records. Cell J, 177(1), 58-69 (2019) https://doi.org/10.1016/j.cell.2019.02.039
Yang J, Zhang H, Hu T, Xu C, Jiang L, Zhang YS, et al. Recent advances of microneedles used towards stimuli-responsive drug delivery, disease theranostics and bioinspired applications. J.Chem.Eng, 426 (2021) https://doi.org/10.1016/j.cej.2021.130561
Yang L, Yang Y, Chen H, Mei L, Zeng X. Polymeric microneedle‐mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian j.pharm.Sci, 17(1), 70-86 (2022) https://doi.org/10.1016/j.ajps.2021.07.002
Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm.Sin.B, 9(3), 469-83 (2019) https://doi.org/10.1016/j.apsb.2019.03.007
Zhang Y, Liu C, Wang J, Ren S, Song Y, Quan P, et al. Ionic liquids in transdermal drug delivery system: Current applications and future perspectives. Chin.Chem.Lett, 34(3), (2023) https://doi.org/10.1016/j.cclet.2022.06.054
Xu C, Yang Y, Gao W. Skin-interfaced sensors in digital medicine: from materials to applications. Matters, 2(6),1414-45 (2020) https://doi.org/10.1016/j.matt.2020.03.020
Manikkath J, Subramony JA. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Adv.Drug.Deliv.Rev, 179 (2021) https://doi.org/10.1016/j.addr.2021.113997
Ouyang Q, Feng X, Kuang S, Panwar N, Song P, Yang C, et al. Self-powered, on-demand transdermal drug delivery system driven by triboelectric nanogenerator. Nano Energy, 62, 610-9 (2019) https://doi.org/10.1016/j.nanoen.2019.05.056
Kar A, Ahamad N, Dewani M, Awasthi L, Patil R, Banerjee R. Wearable and implantable devices for drug delivery: Applications and challenges. Biomater, 283 (2022) https://doi.org/10.1016/j.nanoen.2019.05.056
Gong X, Yang J, Zheng Y, Chen S, Duan H, Gao J, et al. Polymer Hydrogel‐Based Multi functional Theranostics for Managing Diabetic Wounds. Adv.Funct.Mater, 34(26), (2024) https://doi.org/10.1002/adfm.202315564
Ozsoylu D, Wagner T, Schoning MJ. Electrochemical cell-based biosensors for biomedical applications. Curr Top Med Chem, 22(9), 713-33 (2022) https://doi.org/10.2174/1568026622666220304213617
Zheng XT, Yang Z, Sutarlie L, Thangaveloo M, Yu Y, Salleh NA, et al. Battery-free and AI-enabled multiplexed sensor patches for wound monitoring. Sci.Adv, 9(24), (2023) https://doi.org/10.1126/sciadv.adg6670
Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed point-of-care testing–xPOCT. Trends Biotechnol, 35(8), 728-42 (2017) https://doi.org/10.1016/j.tibtech.2017.03.013
Shirzaei Sani E, Xu C, Wang C, Song Y, Min J, Tu J, et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci.Adv, 9(12), (2023) https://doi.org/10.1126/sciadv.adf7388
Kiaee G, Mostafalu P, Samandari M, Sonkusale S. A pH‐mediated electronic wound dressing for controlled drug delivery. Adv.healthc.mater, 7(18), (2018) https://doi.org/10.1002/adhm.201800396
Konno T, Takasu S, Hattori K, Fukuda D. Development of an optical transition-edge sensor array. J.Low Temp. Phys, 199, 27-33 (2020) https://doi.org/10.1007/s10909-020-02367-9
Yuan C, Tony A, Yin R, Wang K, Zhang W. Tactile and thermal sensors built from carbon polymer nanocomposites - A critical review. Sens, 21(4), (2021) https://doi.org/10.3390/s21041234
Iversen M, Monisha M, Agarwala S. Flexible, wearable and fully-printed smart patch for pH and hydration sensing in wounds. Int.J.Bioprinting, 8(1), (2022) https://doi.org/10.18063/ijb.v8i1.447
Tao Q, Liu S, Zhang J, Jiang J, Jin Z, Huang Y, et al. Clinical applications of smart wearable sensors. Iscience, 26(9), (2023) https://doi.org/10.1016/j.isci.2023.107485
Gao B, Guo M, Lyu K, Chu T, He B. Intelligent silk fibroin based microneedle dressing (i‐SMD). Adv.Funct.Mater, 31(3), (2021) https://doi.org/10.1002/adfm.202006839
Pang Q, Lou D, Li S, Wang G, Qiao B, Dong S, et al. Smart flexible electronics‐integrated wound dressing for real‐time monitoring and on‐demand treatment of infected wounds. Adv.Sci, 7(6), (2020) https://doi.org/10.1002/advs.201902673
Jiang H, Ochoa M, Waimin JF, Rahimi R, Ziaie B. A pH-regulated drug delivery dermal patch for targeting infected regions in chronic wounds. Lab chip, 19(13), 2265-74 (2019) https://doi.org/10.1039/C9LC00206E
Bodagala SR, Rani EU, Rani GU, Repana PK, et al. Unveiling the power of smart patches-A revolutionizing wound care. Afr.J.Bio.Sci, 6, 883-898 (2024) https://doi.org/10.48047/AFJBS.6.12.2024.883-898
Zeng Q, Qian Y, Huang Y, Ding F, Qi X, Shen J. Polydopamine nanoparticle-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioact. Mater, 6(9), 2647-57 (2021) https://doi.org/10.1016/j.bioactmat.2021.01.035
Zeng Q, Wang F, Hu R, Ding X, Lu Y, Shi G, et al. Debonding‐On‐Demand Polymeric Wound Patches for Minimal Adhesion and Clinical Communication. Adv.Sci, 9(29), (2022) https://doi.org/10.1002/advs.202202635
Shi Z, Dai C, Deng P, Li X, Wu Y, Lv J, et al.Wearable battery-free smart bandage with peptide functionalized biosensors based on MXene for bacterial wound infection detection. Sens.Actuators B Chem, 383 (2023) https://doi.org/10.1016/j.snb.2023.133598
Holter NJ. New method for heart studies: Continuous electrocardiography of active subjects over long periods is now practical. J.Sci., 134(3486),1214-20 (1961) https://doi.org/10.1126/science.134.3486.1214
Mendelson Y. Pulse oximetry: theory and applications for noninvasive monitoring. Clin.chem, 38(9), 1601-7 (1992) https://doi.org/10.1093/clinchem/38.9.1601
Malhotra BD, Chaubey A. Biosensors for clinical diagnostics industry. Sens.Actuators B Chem, 91(1-3), 117-27 (2003) https://doi.org/10.1016/S0925-4005(03)00075-3
Fensli R, Gunnarson E, Gundersen T. A wearable ECG-recording system for continuous arrhythmia monitoring in a wireless tele-home-care situation. IEEE Symposium on Computer-Based Medical Systems, 407-412 (2005) https://doi.org/10.1109/CBMS.2005.22
Corbishley P, Rodriguez-Villegas E. Breathing detection: towards a miniaturized, wearable, battery-operated monitoring system. IEEE Transactions on Biomedical Engineering, 55(1), 196-204 (2007) https://doi.org/10.1109/TBME.2007.910679
Derakhshandeh H, Kashaf SS, Aghabaglou F, Ghanavati IO, Tamayol A. Smart bandages: the future of wound care. Trends biotechnol, 36(12), 1259-74 (2018) https://doi.org/10.1016/j.tibtech.2018.07.007
Park S, Boo H, Kim Y, Han JH, Kim HC, Chung TD. pH-sensitive solid-state electrode based on electrodeposited nanoporous platinum. Anal.Chem, 77(23), 7695-701 (2005). https://doi.org/10.1021/ac050968j
Bakker E, Pretsch E. Peer Reviewed: The new wave of ion-selective electrodes. Anal.Chem, 74(15), 420-A (2002) https://doi.org/10.1021/ac022086f
Bergveld P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sens.Actuators.B.Chem, 88(1), 1-20 (2003) https://doi.org/10.1016/S0925-4005(02)00301-5
Artukovic E, Kaempgen M, Hecht DS, Roth S, Grüner G. Transparent and flexible carbon nanotube transistors. Nano lett, 5(4), 757-60 (2005) https://doi.org/10.1021/nl050254o
Adhikari B, Majumdar S. Polymers in sensor applications. Prog.polym.sci, 29(7), 699-766 (2004) https://doi.org/10.1016/j.progpolymsci.2004.03.002
Panzarasa G, Osypova A, Toncelli C, Buhmann MT, Rottmar M, Ren Q, et al. The pyranine-benzalkonium ion pair: A promising fluorescent system for the ratiometric detection of wound pH. Sens.Actuators.B. Chem, 249, 156-60 (2017) https://doi.org/10.1016/j.snb.2017.04.045
Trung TQ, Ramasundaram S, Hwang BU, Lee NE. An all‐elastomeric transparent and stretchable temperature sensor for body‐attachable wearable electronics. Adv.mater,28(3), 502-9 (2016) https://doi.org/10.1002/adma.201504441
Hattori Y, Falgout L, Lee W, Jung SY, Poon E, Lee JW, et al. Multifunctional skin‐like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv.healthc.mater, 3(10),1597-607 (2014) https://doi.org/10.1002/adhm.201400073
Mifsud T, Modestini C, Mizzi A, Falzon O, Cassar K, Mizzi S. The effects of skin temperature changes on the integrity of skin tissue: A systematic review. Adv.skin wound care, 35(10), 555-65 (2022) https://doi.org/10.1097/01.ASW.0000833612.84272.da
Oh JH, Hong SY, Park H, Jin SW, Jeong YR, Oh SY, et al. Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive. ACS Appl.Mater.Interfaces, 10(8), 7263-70 (2018) https://doi.org/10.1021/acsami.7b17727
Sen CK. Wound healing essentials: let there be oxygen.Wound.Repair.Regen, 17(1), 1-8 (2009) https://doi.org/10.1111/j.1524-475X.2008.00436.x
Mostafalu P, Lenk W, Dokmeci MR, Ziaie B, Khademhosseini A, Sonkusale SR. Wireless flexible smart bandage for continuous monitoring of wound oxygenation. IEEE Trans. Biomed. Circuits Syst, 9(5), 670-7 (2015) https://doi.org/10.1109/TBCAS.2015.2488582
Milne SD, Seoudi I, Al Hamad H, Talal TK, Anoop AA, Allahverdi N, et al. A wearable wound moisture sensor as an indicator for wound dressing change: an observational study of wound moisture and status. Int.wound j, 13(6), 1309-1 (2016) https://doi.org/10.1111/iwj.12521
Swisher SL, Lin MC, Liao A, Leeflang EJ, Khan Y, Pavinatto FJ, et al. Impedance sensing device enables early detection of pressure ulcers in vivo. Nat.commun, 6(1), 6575 (2015) https://doi.org/10.1038/ncomms7575
Niu W, Liu X. Stretchable ionic conductors for soft electronics. Macromol.Rapid Commun, 43(23), (2022) https://doi.org/10.1002/marc.202200512
Wu J, Wu Z, Wei Y, Ding H, Huang W, Gui X, et al. Ultrasensitive and stretchable temperature sensors based on thermally stable and self-healing organohydrogels. ACS Appl.Mater. Interfaces, 12(16),19069-79 (2020) https://doi.org/10.1021/acsami.0c04359
Wu Z, Shi W, Ding H, Zhong B, Huang W, Zhou Y, et al. Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J.Mater.Chem.C, 9(39),13668-79 (2021) https://doi.org/10.1039/D1TC02506F
Guo H, Bai M, Zhu Y, Liu X, Tian S, Long Y, et al. Pro‐healing zwitterionic skin sensor enables multi‐indicator distinction and continuous real‐time monitoring. Adv.Funct.Mater, 31(50), (2021) https://doi.org/10.1002/adfm.202106406
He M, Ou F, Wu Y, Sun X, Chen X, Li H, et al. Smart multi-layer PVA foam/CMC mesh dressing with integrated multi-functions for wound management and infection monitoring. Mater.Des, 194 (2020) https://doi.org/10.1016/j.matdes.2020.108913
Qiao B, Pang Q, Yuan P, Luo Y, Ma L. Smart wound dressing for infection monitoring and NIR-triggered antibacterial treatment. Biomater.Sci, 8(6),1649-57 (2020) https://doi.org/10.1039/C9BM02060H
Wu K, Wu X, Chen M, Wu H, Jiao Y, Zhou C. H2O2-responsive smart dressing for visible H2O2 monitoring and accelerating wound healing. Chem.Eng.J, 387 (2020) https://doi.org/10.1016/j.cej.2020.124127
Zhu Y, Zhang J, Song J, Yang J, Du Z, Zhao W, et al. A multifunctional pro‐healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv.Funct.Mater, 30(6), (2020) https://doi.org/10.1002/adfm.201905493
Park HJ, Yoon JH, Lee KG, Choi BG. Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays. Nano Converg, 6(1) (2019) https://doi.org/10.1186/s40580-019-0179-0
Ling Y, An T, Yap LW, Zhu B, Gong S, Cheng W. Disruptive, soft, wearable sensors. Adv.Mater, 32(18) (2020) https://doi.org/10.1002/adma.201904664
Ahmed, Zameer & Mehdi, Asghar & Zameer, Sambreen & GD, Geetha & Naqvi, Rehan. Introduction to Pharmaceutical Microbiology. J.Dermatol, 9. 8-8. (2024) https://doi.org/10.31579/2578-8949/172
Franz TJ. Percutaneous absorption on the relevance of in vitro data. J.Invest.Dermatol, 64(3), 190-5 (1975) https://doi.org/10.1111/1523-1747.ep12533356
Mostafalu P, Tamayol A, Rahimi R, Ochoa M, Khalilpour A, et al. Smart bandage for monitoring and treatment of chronic wounds. Small,14(33), (2018) https://doi.org/10.1002/smll.201703509
Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci, 17(3), 353-384 (2022) https://doi.org/10.1016/j.ajps.2022.01.001
Yari A, Yeganeh H, Bakhshi H. Synthesis and evaluation of novel absorptive and antibacterial polyurethane membranes as wound dressing. J Mater Sci: Mater Med, 23, 2187–2202 (2012) https://doi.org/10.1007/s10856-012-4683-6
Afzal S, Barkat K, Ashraf MU, Khalid I, Mehmood Y et al. Formulation and Characterization of Polymeric Cross-Linked Hydrogel Patches for Topical Delivery of Antibiotic for Healing Wound Infections. Polym,15(7), (2023) https://doi.org/10.3390/polym15071652
Ahmad N. In vitro and in vivo characterization methods for evaluation of modern wound dressings. Pharm., 15(1), (2022) https://doi.org/10.3390/pharmaceutics15010042.
Chun KS, Kang YJ, Lee JY, Nguyen M, Lee B, Lee R, et al. A skin-conformable wireless sensor to objectively quantify symptoms of pruritus. Sci.Adv. 7(18), (2021) https://doi.org/10.1126/sciadv.abf9405
Tang N, Zheng Y, Jiang X, Zhou C, Jin H, Jin K, et al. Wearable sensors and systems for wound healing-related pH and temperature detection. Micromachines, 12(4), (2021) https://doi.org/10.3390/mi12040430
Mariani F, Serafini M, Gualandi I, Arcangeli D, Decataldo F, Possanzini L et al. Advanced wound dressing for real-time pH monitoring. ACS sens., 6(6), 2366-77 (2021) https://doi.org/10.1021/acssensors.1c00552
Rajasekaran M, Ranganathan CS, Manikandan G, Bhuvaneswari G, GaneshBabu TR, et al. Cloud-Based AI Solutions for Early Wound Infection Detection and Treatment Recommendations. IEEE, 591-596 (2024) https://doi.org/10.1109/ICSES63445.2024.10763001
Augustine R, Hasan A, Dalvi YB, Rehman SR, Varghese R, et al. Growth factor loaded in situ photocrosslinkable poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing. MSE, 118, (2021) https://doi.org/10.1016/j.msec.2020.111519
Ahmad N. In vitro and in vivo characterization methods for evaluation of modern wound dressings. Pharm, 15(1), (2022) https://doi.org/10.3390/pharmaceutics15010042
Kang M, Yum HY, Kim HT, Park BJ, Cho DS, Choi Y, et al. Self-Powered Electrical Bandage Based on Body-Coupled Energy Harvesting. Adv Mater, 36(32), (2024) https://doi.org/10.1002/adma.202402491
Solanki D, Vinchhi P, Patel MM. Design considerations, formulation approaches, and strategic advances of hydrogel dressings for chronic wound management. Acs Omega, 8(9), 8172-89 (2023) https://doi.org/10.1021/acsomega.2c06806
Fogel R, Limson J, Seshia AA. Acoustic biosensors. Essays Biochem., 60(1), (2016) https://doi.org/10.1042/EBC20150011
Madhvapathy SR, Wang H, Kong J, Zhang M, Lee JY, Park JB, et al. Reliable, low-cost, fully integrated hydration sensors for monitoring and diagnosis of inflammatory skin diseases in any environment. Sci.Adv., 6(49), (2020) https://doi.org/10.1126/sciadv.abd7146
Mariani F, Serafini M, Gualandi I, Arcangeli D, Decataldo F, Possanzini L, et al. Advanced wound dressing for real-time pH monitoring. ACS sens, 6(6), 2366-77 (2021) https://doi.org/10.1021/acssensors.1c00552
Zhang L, Kumar KS, He H, Cai CJ, He X, Gao H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat.commun., 11(1), (2020) https://doi.org/10.1038/s41467-020-18503-8
Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat.nanotechnol,11(6), 566-72 (2016) https://doi.org/10.1038/nnano.2016.38
Taylor LW, Williams SM, Yan JS, Dewey OS, Vitale F, Pasquali M. Washable, sewable, all-carbon electrodes and signal wires for electronic clothing. Nano Lett, 21(17),7093-9 (2021) https://doi.org/10.1021/acs.nanolett.1c01039
Fang Y, Zou Y, Xu J, Chen G, Zhou Y, Deng W, et al. Ambulatory cardiovascular monitoring via a machine‐learning‐assisted textile triboelectric sensor. Adv.Mater., 33(41), (2021) https://doi.org/10.1002/adma.202104178
Abdollahi S, Markvicka EJ, Majidi C, Feinberg AW. 3D printing silicone elastomer for patient‐specific wearable pulse oximeter. Adv.Healthc.Mater., 9(15), (2020) https://doi.org/10.1002/adhm.201901735
Han D, Khan Y, Ting J, Zhu J, Combe C, Wadsworth A, et al. Pulse oximetry using organic optoelectronics under ambient light. Adv.Mater.Technol., 5(5), (2020) https://doi.org/10.1002/admt.201901122
An S, Pu X, Zhou S, Wu Y, Li G, Xing P, et al. Deep learning enabled neck motion detection using a triboelectric nanogenerator. ACS nano, 16(6), 9359-67 (2022) https://doi.org/10.1021/acsnano.2c02149
Wang ZL. Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives. Faraday Discuss, 176, 447-58 (2014) https://doi.org/10.1039/C4FD00159A
Samper-Escudero JL, Contreras-González AF, Ferre M, Sánchez-Urán MA, Pont-Esteban D. Efficient multiaxial shoulder-motion tracking based on flexible resistive sensors applied to exosuits. Soft Robot,7(3), 370-85 (2020) https://doi.org/10.1089/soro.2019.0040
Kim KK, Ha I, Kim M, Choi J, Won P, Jo S, et al. A deep-learned skin sensor decoding the epicentral human motions. Nat.commun, 11(1), (2020) https://doi.org/10.1038/s41467-020-16040-y
Zhu S, Kim D, Jeong C. Recent Development of Mechanical Stimuli Detectable Sensors, Their Future, and Challenges: A Review. J.Sens, 23(9) (2023) https://doi.org/10.3390/s23094300
Gao S, He T, Zhang Z, Ao H, Jiang H, Lee C. A motion capturing and energy harvesting hybridized lower‐limb system for rehabilitation and sports applications. Adv.Sci., 8(20), (2021) https://doi.org/10.1002/advs.202101834
Moreddu R, Elsherif M, Adams H, Moschou D, Cordeiro MF, Wolffsohn JS, et al. Integration of paper microfluidic sensors into contact lenses for tear fluid analysis. LOC, 20(21), 3970-9 (2020) https://doi.org/10.1039/D0LC00438C
Tang W, Yin L, Sempionatto JR, Moon JM, Teymourian H, Wang J. Touch‐based stressless cortisol sensing. Adv.mater, 33(18), (2021) https://doi.org/10.1002/adma.202008465
Tai LC, Liaw TS, Lin Y, Nyein HY, Bariya M, Ji W, et al. Wearable sweat band for noninvasive levodopa monitoring. Nano.lett, 19(9), 6346-51 (2019) https://doi.org/10.1021/acs.nanolett.9b02478
Wang L, Fu X, He J, Shi X, Chen T, Chen P, et al. Application challenges in fiber and textile electronics. Adv.mater, 32(5), (2020) https://doi.org/10.1002/adma.201901971
Khatsenko K, Khin Y, Maibach H. Allergic contact dermatitis to components of wearable adhesive health devices. Dermatitis, 31(5), 283-6 (2020) https://doi.org/10.1097/DER.0000000000000575
Gao F, Liu C, Zhang L, Liu T, Wang Z, Song Z, et al. Wearable and flexible electrochemical sensors for sweat analysis: a review. Microsyst.Nanoeng, 9(1), 1-21 (2023) https://doi.org/10.1038/s41378-022-00443-6
Wang L, Fu X, He J, Shi X, Chen T, Chen P, et al. Application challenges in fiber and textile electronics. Adv.mater, 32(5), (2020) https://doi.org/10.1002/adma.201901971
Ahad A, Tahir M, Aman Sheikh M, Ahmed KI, Mughees A, Numani A. Technologies trend towards 5G network for smart health-care using IoT: A review. Sens, 20(14), (2020) https://doi.org/10.3390/s20144047
Pyl J, Dendooven E, Van Eekelen I, den Brinker M, Dotremont H, France A et al. Prevalence and prevention of contact dermatitis caused by FreeStyle Libre: a monocentric experience. Diabetes Care, 43(4), 918-20 (2020) https://doi.org/10.2337/dc19-1354
Mowitz M, Lejding T, Ulriksdotter J, Antelmi A, Bruze M, Svedman C. Further evidence of allergic contact dermatitis caused by 2, 2′-methylenebis (6-tert-butyl-4-methylphenol) monoacrylate, a new sensitizer in the Dexcom G6 glucose sensor. Dermatitis, 33(4), 287-92 (2022) https://doi.org/10.1097/DER.0000000000000767
Seibold A. Minimizing adverse skin reactions to wearable continuous glucose monitoring sensors in patients with diabetes. J Diabetes Sci Technol, 15(3), 713-4 (2021) https://doi.org/10.1177/1932296820984763
Liu H, Wang L, Lin G, Feng Y. Recent progress in the fabrication of flexible materials for wearable sensors. Biomater.Sci,10(3), 614-32 (2022) https://doi.org/10.1039/D1BM01136G
Heikenfeld J, Jajack A, Rogers J, Gutruf P, Tian L, Pan T, et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip, 18(2), 217-48 (2018) https://doi.org/10.1039/C7LC00914C
Cuesta-Frau D, Varela M, Aboy M, Miró-Martínez P. Description of a portable wireless device for high-frequency body temperature acquisition and analysis. Sens, 9(10), 7648-63 (2009) https://doi.org/10.3390/s91007648
Dheman K, Giordano M, Thomas C, Schilk P, Magno M. i-CardiAx: Wearable IoT-Driven System for Early Sepsis Detection Through Long-Term Vital Sign Monitoring. IEEE, 97-109 (2024) https://doi.org/10.48550/arXiv.2407.21433
Xu J, Mohan R, Van Helleputte N, Mitra S. Design and Optimization of ICs for Wearable EEG Sensors. Springer, Cham,163-85 (2018) https://doi.org/10.1007/978-3-319-67723-1_7
Anderson CA, Hare MA, Perdrizet GA. Wound Healing Devices Brief Vignettes. Adv Wound Care, 5(4), 185-190 (2016) https://doi.org/10.1089/wound.2015.0651
Rashid N, Mortlock T, Al Faruque MA. Stress detection using context-aware sensor fusion from wearable devices. IEEE Internet of Things J, 10(16), 14114-27 (2023) https://doi.org/10.48550/arXiv.2303.08215
Phillips C, Liaqat D, Gabel M, de Lara E. WristO2: Reliable peripheral oxygen saturation readings from wrist-worn pulse oximeters. IEEE, 623-629 (2021) https://doi.org/10.48550/arXiv.1906.07545
Narukulla N, Lopes J, Hajari VR, Prasad N, Swamy H. Real Time Data Processing and Predictive Analytics Using Cloud Based Machine Learning. Tuijin Jishu/J. Propuls.Technol, 42(4), 91-102 (2021) https://doi.org/10.52783/tjjpt.v42.i4.6757
Abdel-Salam R, Mostafa R, Hadhood M. Human activity recognition using wearable sensors: review, challenges, evaluation benchmark. Springer,1-15 (2021) https://doi.org/10.48550/arXiv.2101.01665
Kaur R, Shahrestani S, Ruan C. Security and Privacy of Wearable Wireless Sensors in Healthcare: A Systematic Review. J. Comput. Netw. 5, 27-52 (2024) https://doi.org/10.37256/cnc.2120243852
Clarke M, Martin K. Managing cybersecurity risk in healthcare settings. Healthc Manage Forum,37(1),17-20 (2024) https://doi.org/10.1177/08404704231195804
Huang X, Liu Y, Zhou J, Nejad SK, Wong TH, Huang Y, et al. Garment embedded sweat-activated batteries in wearable electronics for continuous sweat monitoring. npj flex. electron, 6(1), (2022) https://doi.org/10.1038/s41528-022-00144-0
Al-Halawani R, Charlton PH, Qassem M, Kyriacou PA. A review of the effect of skin pigmentation on pulse oximeter accuracy. Physiol. Meas, 44(5), (2023) https://doi.org/10.1088/1361-6579/acd51a
Huusko J, Kinnunen UM, Saranto K. Medical device regulation (MDR) in health technology enterprises - perspectives of managers and regulatory professionals. BMC Health Serv Res, 23(1), (2023) https://doi.org/10.1186/s12913-023-09316-8
Terry N P. Assessing the Thin Regulation of Consumer-Facing Health Technologies. J.L.Med.& Ethics, 48(1), 94-102 (2020) https://doi.org/10.1177/1073110520917034
Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine learning, and clinical medicine. N Engl J Med, 375(13), (2021) https://doi.org/10.1056/NEJMp1606181

Published
How to Cite
Issue
Section
Copyright (c) 2025 Prasanthi Samathoti, Sai Ramya Bodagala

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.