Advancements in smart wearable patch systems for enhanced wound healing

Authors

  • Prasanthi Samathoti Department of Pharmaceutics, MB School of Pharmaceutical Sciences (Erstwhile Sree Vidyanikethan College of Pharmacy), Mohan Babu University, Tirupati-517102, AP, India
  • Sai Ramya Bodagala Department of Pharmaceutics, MB School of Pharmaceutical Sciences (Erstwhile Sree Vidyanikethan College of Pharmacy), Mohan Babu University, Tirupati-517102, AP, India

DOI:

https://doi.org/10.69857/joapr.v13i2.667

Keywords:

Intelligent patches, smart patches, wound healing, stimuli-responsive dressings, smart sensors,, chronic wounds

Abstract

Background: Chronic wounds afflict around 2% of the world's population and cost billions of dollars each year in medical costs. By some estimates, over 13 million people worldwide suffer from chronic wounds yearly. The absence of continuous surveillance in conventional dressings for wounds causes prolongation in the treatment and raises the danger of infection. Timely and practical assessment of wounds is key to reducing infection and healing wounds. This is possible by smart dressings with sensors continuously providing input while monitoring important wound variables involving pH, temperature, and moisture. Considering current and upcoming advancements, this paper examines how intelligent patches could transform healing. Methodology: The latest advances in the development, usage of intelligent patches, and their development by different researchers are highlighted in this review. It looks at how sensors are incorporated into these patches and provides an overview of developing intelligent wound dressings by integrating one or more sensors triggered by endogenous and exogenous stimuli. Results and Discussion: The fabrication and effectiveness of intelligent dressings have advanced significantly, but there are still issues with sensor precision and resilience, especially regarding the requirement for strict regulations. The discussion also explores the critical need to address legal and technological constraints to enhance the usefulness of such wearable gadgets in medical settings. Conclusion: Intelligent patches, a fascinating new development in wound care, enable customized therapy with continuous surveillance. Future studies should address real-world challenges to fully realize their potential to refine wound recovery outcomes in medical care.

Downloads

Download data is not yet available.

References

Leal-Junior A, Guo J, Min R, Fernandes AJ, Frizera A, Marques C. Photonic smart bandage for wound healing assessment. Photonics Res, 9(3), 272-80 (2021) https://doi.org/10.1364/PRJ.410168

Zeng Q, Qi X, Shi G, Zhang M, Haick H. Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS nano, 16(2), 1708-33 (2022) https://doi.org/10.1021/acsnano.1c08411

Gupta N, Gupta SK, Shukla VK, Singh SP. An Indian community based epidemiological study of wounds. J.Wound Care, 13(8), 323–59 (2004) https://doi.org/10.12968/jowc.2004.13.8.26657

Cheng S, Gu Z, Zhou L, Hao M, An H, Song K, et al. Recent progress in intelligent wearable sensors for health monitoring and wound healing based on biofluids. Front.Bioeng.Biotechnol, 9, (2021) https://doi.org/10.3389/fbioe.2021.765987

Sen CK. Human wounds and its burden: an updated compendium of estimates. Adv.wound care, 8(2), 39-48 (2019) https://doi.org/10.1089/wound.2019.0946

Vowden K, Vowden P. Wound dressings: principles and practice. Surgery (Oxford), 35(9), 489-94 (2017) https://doi.org/10.1016/j.mpsur.2017.06.005

Michaleas SN, Laios K, Charalabopoulos A, Samonis G, Karamanou M. Joseph Lister. A Pioneer of Antiseptic Surgery. Cureus, 14(12), (2022) https://doi.org/10.7759/cureus.32777

Nguyen HM, Ngoc Le TT, Nguyen AT, Thien Le HN, Pham TT. Biomedical materials for wound dressing: recent advances and applications. RSC Adv, 13(8), 5509-5528 (2023) https://doi.org/10.1039/d2ra07673j

Wang J, Chen Y, Zhou G, Chen Y, Mao C, Yang M. Polydopamine-coated Antheraea pernyi (A. pernyi) silk fibroin films promote cell adhesion and wound healing in skin tissue repair. ACS Appl.Mater.Interfaces, 11(38), 34736-43 (2019) https://doi.org/10.1021/acsami.9b12643

Abdali Z, Logsetty S, Liu S. Bacteria-responsive single and core–shell nanofibrous membranes based on polycaprolactone/poly (ethylene succinate) for on-demand release of biocides. ACS omega, 4(2), 4063-70 (2019) https://doi.org/10.1021/acsomega.8b03137

Zhang Y, Li T, Zhao C, Li J, Huang R, Zhang Q et al. An Integrated Smart Sensor Dressing for Real-Time Wound Microenvironment Monitoring and Promoting Angiogenesis and Wound Healing. Front.Cell Dev.Biol, 9 (2021) https://doi.org/10.3389/fcell.2021.701525

Wu M, Chen J, Huang W, Yan B, Peng Q, Liu J, et al. Injectable and self-healing nano composite hydrogels with ultrasensitive pH-responsiveness and tunable mechanical properties: implications for controlled drug delivery. J.Biol.Macromol, 21(6), 2409-20 (2020) https://doi.org/10.1021/acs.biomac.0c00347

Abul-Husn NS, Kenny EE. Personalized medicine and the power of electronic health records. Cell J, 177(1), 58-69 (2019) https://doi.org/10.1016/j.cell.2019.02.039

Yang J, Zhang H, Hu T, Xu C, Jiang L, Zhang YS, et al. Recent advances of microneedles used towards stimuli-responsive drug delivery, disease theranostics and bioinspired applications. J.Chem.Eng, 426 (2021) https://doi.org/10.1016/j.cej.2021.130561

Yang L, Yang Y, Chen H, Mei L, Zeng X. Polymeric microneedle‐mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian j.pharm.Sci, 17(1), 70-86 (2022) https://doi.org/10.1016/j.ajps.2021.07.002

Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm.Sin.B, 9(3), 469-83 (2019) https://doi.org/10.1016/j.apsb.2019.03.007

Zhang Y, Liu C, Wang J, Ren S, Song Y, Quan P, et al. Ionic liquids in transdermal drug delivery system: Current applications and future perspectives. Chin.Chem.Lett, 34(3), (2023) https://doi.org/10.1016/j.cclet.2022.06.054

Xu C, Yang Y, Gao W. Skin-interfaced sensors in digital medicine: from materials to applications. Matters, 2(6),1414-45 (2020) https://doi.org/10.1016/j.matt.2020.03.020

Manikkath J, Subramony JA. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Adv.Drug.Deliv.Rev, 179 (2021) https://doi.org/10.1016/j.addr.2021.113997

Ouyang Q, Feng X, Kuang S, Panwar N, Song P, Yang C, et al. Self-powered, on-demand transdermal drug delivery system driven by triboelectric nanogenerator. Nano Energy, 62, 610-9 (2019) https://doi.org/10.1016/j.nanoen.2019.05.056

Kar A, Ahamad N, Dewani M, Awasthi L, Patil R, Banerjee R. Wearable and implantable devices for drug delivery: Applications and challenges. Biomater, 283 (2022) https://doi.org/10.1016/j.nanoen.2019.05.056

Gong X, Yang J, Zheng Y, Chen S, Duan H, Gao J, et al. Polymer Hydrogel‐Based Multi functional Theranostics for Managing Diabetic Wounds. Adv.Funct.Mater, 34(26), (2024) https://doi.org/10.1002/adfm.202315564

Ozsoylu D, Wagner T, Schoning MJ. Electrochemical cell-based biosensors for biomedical applications. Curr Top Med Chem, 22(9), 713-33 (2022) https://doi.org/10.2174/1568026622666220304213617

Zheng XT, Yang Z, Sutarlie L, Thangaveloo M, Yu Y, Salleh NA, et al. Battery-free and AI-enabled multiplexed sensor patches for wound monitoring. Sci.Adv, 9(24), (2023) https://doi.org/10.1126/sciadv.adg6670

Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed point-of-care testing–xPOCT. Trends Biotechnol, 35(8), 728-42 (2017) https://doi.org/10.1016/j.tibtech.2017.03.013

Shirzaei Sani E, Xu C, Wang C, Song Y, Min J, Tu J, et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci.Adv, 9(12), (2023) https://doi.org/10.1126/sciadv.adf7388

Kiaee G, Mostafalu P, Samandari M, Sonkusale S. A pH‐mediated electronic wound dressing for controlled drug delivery. Adv.healthc.mater, 7(18), (2018) https://doi.org/10.1002/adhm.201800396

Konno T, Takasu S, Hattori K, Fukuda D. Development of an optical transition-edge sensor array. J.Low Temp. Phys, 199, 27-33 (2020) https://doi.org/10.1007/s10909-020-02367-9

Yuan C, Tony A, Yin R, Wang K, Zhang W. Tactile and thermal sensors built from carbon polymer nanocomposites - A critical review. Sens, 21(4), (2021) https://doi.org/10.3390/s21041234

Iversen M, Monisha M, Agarwala S. Flexible, wearable and fully-printed smart patch for pH and hydration sensing in wounds. Int.J.Bioprinting, 8(1), (2022) https://doi.org/10.18063/ijb.v8i1.447

Tao Q, Liu S, Zhang J, Jiang J, Jin Z, Huang Y, et al. Clinical applications of smart wearable sensors. Iscience, 26(9), (2023) https://doi.org/10.1016/j.isci.2023.107485

Gao B, Guo M, Lyu K, Chu T, He B. Intelligent silk fibroin based microneedle dressing (i‐SMD). Adv.Funct.Mater, 31(3), (2021) https://doi.org/10.1002/adfm.202006839

Pang Q, Lou D, Li S, Wang G, Qiao B, Dong S, et al. Smart flexible electronics‐integrated wound dressing for real‐time monitoring and on‐demand treatment of infected wounds. Adv.Sci, 7(6), (2020) https://doi.org/10.1002/advs.201902673

Jiang H, Ochoa M, Waimin JF, Rahimi R, Ziaie B. A pH-regulated drug delivery dermal patch for targeting infected regions in chronic wounds. Lab chip, 19(13), 2265-74 (2019) https://doi.org/10.1039/C9LC00206E

Bodagala SR, Rani EU, Rani GU, Repana PK, et al. Unveiling the power of smart patches-A revolutionizing wound care. Afr.J.Bio.Sci, 6, 883-898 (2024) https://doi.org/10.48047/AFJBS.6.12.2024.883-898

Zeng Q, Qian Y, Huang Y, Ding F, Qi X, Shen J. Polydopamine nanoparticle-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioact. Mater, 6(9), 2647-57 (2021) https://doi.org/10.1016/j.bioactmat.2021.01.035

Zeng Q, Wang F, Hu R, Ding X, Lu Y, Shi G, et al. Debonding‐On‐Demand Polymeric Wound Patches for Minimal Adhesion and Clinical Communication. Adv.Sci, 9(29), (2022) https://doi.org/10.1002/advs.202202635

Shi Z, Dai C, Deng P, Li X, Wu Y, Lv J, et al.Wearable battery-free smart bandage with peptide functionalized biosensors based on MXene for bacterial wound infection detection. Sens.Actuators B Chem, 383 (2023) https://doi.org/10.1016/j.snb.2023.133598

Holter NJ. New method for heart studies: Continuous electrocardiography of active subjects over long periods is now practical. J.Sci., 134(3486),1214-20 (1961) https://doi.org/10.1126/science.134.3486.1214

Mendelson Y. Pulse oximetry: theory and applications for noninvasive monitoring. Clin.chem, 38(9), 1601-7 (1992) https://doi.org/10.1093/clinchem/38.9.1601

Malhotra BD, Chaubey A. Biosensors for clinical diagnostics industry. Sens.Actuators B Chem, 91(1-3), 117-27 (2003) https://doi.org/10.1016/S0925-4005(03)00075-3

Fensli R, Gunnarson E, Gundersen T. A wearable ECG-recording system for continuous arrhythmia monitoring in a wireless tele-home-care situation. IEEE Symposium on Computer-Based Medical Systems, 407-412 (2005) https://doi.org/10.1109/CBMS.2005.22

Corbishley P, Rodriguez-Villegas E. Breathing detection: towards a miniaturized, wearable, battery-operated monitoring system. IEEE Transactions on Biomedical Engineering, 55(1), 196-204 (2007) https://doi.org/10.1109/TBME.2007.910679

Derakhshandeh H, Kashaf SS, Aghabaglou F, Ghanavati IO, Tamayol A. Smart bandages: the future of wound care. Trends biotechnol, 36(12), 1259-74 (2018) https://doi.org/10.1016/j.tibtech.2018.07.007

Park S, Boo H, Kim Y, Han JH, Kim HC, Chung TD. pH-sensitive solid-state electrode based on electrodeposited nanoporous platinum. Anal.Chem, 77(23), 7695-701 (2005). https://doi.org/10.1021/ac050968j

Bakker E, Pretsch E. Peer Reviewed: The new wave of ion-selective electrodes. Anal.Chem, 74(15), 420-A (2002) https://doi.org/10.1021/ac022086f

Bergveld P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sens.Actuators.B.Chem, 88(1), 1-20 (2003) https://doi.org/10.1016/S0925-4005(02)00301-5

Artukovic E, Kaempgen M, Hecht DS, Roth S, Grüner G. Transparent and flexible carbon nanotube transistors. Nano lett, 5(4), 757-60 (2005) https://doi.org/10.1021/nl050254o

Adhikari B, Majumdar S. Polymers in sensor applications. Prog.polym.sci, 29(7), 699-766 (2004) https://doi.org/10.1016/j.progpolymsci.2004.03.002

Panzarasa G, Osypova A, Toncelli C, Buhmann MT, Rottmar M, Ren Q, et al. The pyranine-benzalkonium ion pair: A promising fluorescent system for the ratiometric detection of wound pH. Sens.Actuators.B. Chem, 249, 156-60 (2017) https://doi.org/10.1016/j.snb.2017.04.045

Trung TQ, Ramasundaram S, Hwang BU, Lee NE. An all‐elastomeric transparent and stretchable temperature sensor for body‐attachable wearable electronics. Adv.mater,28(3), 502-9 (2016) https://doi.org/10.1002/adma.201504441

Hattori Y, Falgout L, Lee W, Jung SY, Poon E, Lee JW, et al. Multifunctional skin‐like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv.healthc.mater, 3(10),1597-607 (2014) https://doi.org/10.1002/adhm.201400073

Mifsud T, Modestini C, Mizzi A, Falzon O, Cassar K, Mizzi S. The effects of skin temperature changes on the integrity of skin tissue: A systematic review. Adv.skin wound care, 35(10), 555-65 (2022) https://doi.org/10.1097/01.ASW.0000833612.84272.da

Oh JH, Hong SY, Park H, Jin SW, Jeong YR, Oh SY, et al. Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive. ACS Appl.Mater.Interfaces, 10(8), 7263-70 (2018) https://doi.org/10.1021/acsami.7b17727

Sen CK. Wound healing essentials: let there be oxygen.Wound.Repair.Regen, 17(1), 1-8 (2009) https://doi.org/10.1111/j.1524-475X.2008.00436.x

Mostafalu P, Lenk W, Dokmeci MR, Ziaie B, Khademhosseini A, Sonkusale SR. Wireless flexible smart bandage for continuous monitoring of wound oxygenation. IEEE Trans. Biomed. Circuits Syst, 9(5), 670-7 (2015) https://doi.org/10.1109/TBCAS.2015.2488582

Milne SD, Seoudi I, Al Hamad H, Talal TK, Anoop AA, Allahverdi N, et al. A wearable wound moisture sensor as an indicator for wound dressing change: an observational study of wound moisture and status. Int.wound j, 13(6), 1309-1 (2016) https://doi.org/10.1111/iwj.12521

Swisher SL, Lin MC, Liao A, Leeflang EJ, Khan Y, Pavinatto FJ, et al. Impedance sensing device enables early detection of pressure ulcers in vivo. Nat.commun, 6(1), 6575 (2015) https://doi.org/10.1038/ncomms7575

Niu W, Liu X. Stretchable ionic conductors for soft electronics. Macromol.Rapid Commun, 43(23), (2022) https://doi.org/10.1002/marc.202200512

Wu J, Wu Z, Wei Y, Ding H, Huang W, Gui X, et al. Ultrasensitive and stretchable temperature sensors based on thermally stable and self-healing organohydrogels. ACS Appl.Mater. Interfaces, 12(16),19069-79 (2020) https://doi.org/10.1021/acsami.0c04359

Wu Z, Shi W, Ding H, Zhong B, Huang W, Zhou Y, et al. Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J.Mater.Chem.C, 9(39),13668-79 (2021) https://doi.org/10.1039/D1TC02506F

Guo H, Bai M, Zhu Y, Liu X, Tian S, Long Y, et al. Pro‐healing zwitterionic skin sensor enables multi‐indicator distinction and continuous real‐time monitoring. Adv.Funct.Mater, 31(50), (2021) https://doi.org/10.1002/adfm.202106406

He M, Ou F, Wu Y, Sun X, Chen X, Li H, et al. Smart multi-layer PVA foam/CMC mesh dressing with integrated multi-functions for wound management and infection monitoring. Mater.Des, 194 (2020) https://doi.org/10.1016/j.matdes.2020.108913

Qiao B, Pang Q, Yuan P, Luo Y, Ma L. Smart wound dressing for infection monitoring and NIR-triggered antibacterial treatment. Biomater.Sci, 8(6),1649-57 (2020) https://doi.org/10.1039/C9BM02060H

Wu K, Wu X, Chen M, Wu H, Jiao Y, Zhou C. H2O2-responsive smart dressing for visible H2O2 monitoring and accelerating wound healing. Chem.Eng.J, 387 (2020) https://doi.org/10.1016/j.cej.2020.124127

Zhu Y, Zhang J, Song J, Yang J, Du Z, Zhao W, et al. A multifunctional pro‐healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv.Funct.Mater, 30(6), (2020) https://doi.org/10.1002/adfm.201905493

Park HJ, Yoon JH, Lee KG, Choi BG. Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays. Nano Converg, 6(1) (2019) https://doi.org/10.1186/s40580-019-0179-0

Ling Y, An T, Yap LW, Zhu B, Gong S, Cheng W. Disruptive, soft, wearable sensors. Adv.Mater, 32(18) (2020) https://doi.org/10.1002/adma.201904664

Ahmed, Zameer & Mehdi, Asghar & Zameer, Sambreen & GD, Geetha & Naqvi, Rehan. Introduction to Pharmaceutical Microbiology. J.Dermatol, 9. 8-8. (2024) https://doi.org/10.31579/2578-8949/172

Franz TJ. Percutaneous absorption on the relevance of in vitro data. J.Invest.Dermatol, 64(3), 190-5 (1975) https://doi.org/10.1111/1523-1747.ep12533356

Mostafalu P, Tamayol A, Rahimi R, Ochoa M, Khalilpour A, et al. Smart bandage for monitoring and treatment of chronic wounds. Small,14(33), (2018) https://doi.org/10.1002/smll.201703509

Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci, 17(3), 353-384 (2022) https://doi.org/10.1016/j.ajps.2022.01.001

Yari A, Yeganeh H, Bakhshi H. Synthesis and evaluation of novel absorptive and antibacterial polyurethane membranes as wound dressing. J Mater Sci: Mater Med, 23, 2187–2202 (2012) https://doi.org/10.1007/s10856-012-4683-6

Afzal S, Barkat K, Ashraf MU, Khalid I, Mehmood Y et al. Formulation and Characterization of Polymeric Cross-Linked Hydrogel Patches for Topical Delivery of Antibiotic for Healing Wound Infections. Polym,15(7), (2023) https://doi.org/10.3390/polym15071652

Ahmad N. In vitro and in vivo characterization methods for evaluation of modern wound dressings. Pharm., 15(1), (2022) https://doi.org/10.3390/pharmaceutics15010042.

Chun KS, Kang YJ, Lee JY, Nguyen M, Lee B, Lee R, et al. A skin-conformable wireless sensor to objectively quantify symptoms of pruritus. Sci.Adv. 7(18), (2021) https://doi.org/10.1126/sciadv.abf9405

Tang N, Zheng Y, Jiang X, Zhou C, Jin H, Jin K, et al. Wearable sensors and systems for wound healing-related pH and temperature detection. Micromachines, 12(4), (2021) https://doi.org/10.3390/mi12040430

Mariani F, Serafini M, Gualandi I, Arcangeli D, Decataldo F, Possanzini L et al. Advanced wound dressing for real-time pH monitoring. ACS sens., 6(6), 2366-77 (2021) https://doi.org/10.1021/acssensors.1c00552

Rajasekaran M, Ranganathan CS, Manikandan G, Bhuvaneswari G, GaneshBabu TR, et al. Cloud-Based AI Solutions for Early Wound Infection Detection and Treatment Recommendations. IEEE, 591-596 (2024) https://doi.org/10.1109/ICSES63445.2024.10763001

Augustine R, Hasan A, Dalvi YB, Rehman SR, Varghese R, et al. Growth factor loaded in situ photocrosslinkable poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing. MSE, 118, (2021) https://doi.org/10.1016/j.msec.2020.111519

Ahmad N. In vitro and in vivo characterization methods for evaluation of modern wound dressings. Pharm, 15(1), (2022) https://doi.org/10.3390/pharmaceutics15010042

Kang M, Yum HY, Kim HT, Park BJ, Cho DS, Choi Y, et al. Self-Powered Electrical Bandage Based on Body-Coupled Energy Harvesting. Adv Mater, 36(32), (2024) https://doi.org/10.1002/adma.202402491

Solanki D, Vinchhi P, Patel MM. Design considerations, formulation approaches, and strategic advances of hydrogel dressings for chronic wound management. Acs Omega, 8(9), 8172-89 (2023) https://doi.org/10.1021/acsomega.2c06806

Fogel R, Limson J, Seshia AA. Acoustic biosensors. Essays Biochem., 60(1), (2016) https://doi.org/10.1042/EBC20150011

Madhvapathy SR, Wang H, Kong J, Zhang M, Lee JY, Park JB, et al. Reliable, low-cost, fully integrated hydration sensors for monitoring and diagnosis of inflammatory skin diseases in any environment. Sci.Adv., 6(49), (2020) https://doi.org/10.1126/sciadv.abd7146

Mariani F, Serafini M, Gualandi I, Arcangeli D, Decataldo F, Possanzini L, et al. Advanced wound dressing for real-time pH monitoring. ACS sens, 6(6), 2366-77 (2021) https://doi.org/10.1021/acssensors.1c00552

Zhang L, Kumar KS, He H, Cai CJ, He X, Gao H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat.commun., 11(1), (2020) https://doi.org/10.1038/s41467-020-18503-8

Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat.nanotechnol,11(6), 566-72 (2016) https://doi.org/10.1038/nnano.2016.38

Taylor LW, Williams SM, Yan JS, Dewey OS, Vitale F, Pasquali M. Washable, sewable, all-carbon electrodes and signal wires for electronic clothing. Nano Lett, 21(17),7093-9 (2021) https://doi.org/10.1021/acs.nanolett.1c01039

Fang Y, Zou Y, Xu J, Chen G, Zhou Y, Deng W, et al. Ambulatory cardiovascular monitoring via a machine‐learning‐assisted textile triboelectric sensor. Adv.Mater., 33(41), (2021) https://doi.org/10.1002/adma.202104178

Abdollahi S, Markvicka EJ, Majidi C, Feinberg AW. 3D printing silicone elastomer for patient‐specific wearable pulse oximeter. Adv.Healthc.Mater., 9(15), (2020) https://doi.org/10.1002/adhm.201901735

Han D, Khan Y, Ting J, Zhu J, Combe C, Wadsworth A, et al. Pulse oximetry using organic optoelectronics under ambient light. Adv.Mater.Technol., 5(5), (2020) https://doi.org/10.1002/admt.201901122

An S, Pu X, Zhou S, Wu Y, Li G, Xing P, et al. Deep learning enabled neck motion detection using a triboelectric nanogenerator. ACS nano, 16(6), 9359-67 (2022) https://doi.org/10.1021/acsnano.2c02149

Wang ZL. Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives. Faraday Discuss, 176, 447-58 (2014) https://doi.org/10.1039/C4FD00159A

Samper-Escudero JL, Contreras-González AF, Ferre M, Sánchez-Urán MA, Pont-Esteban D. Efficient multiaxial shoulder-motion tracking based on flexible resistive sensors applied to exosuits. Soft Robot,7(3), 370-85 (2020) https://doi.org/10.1089/soro.2019.0040

Kim KK, Ha I, Kim M, Choi J, Won P, Jo S, et al. A deep-learned skin sensor decoding the epicentral human motions. Nat.commun, 11(1), (2020) https://doi.org/10.1038/s41467-020-16040-y

Zhu S, Kim D, Jeong C. Recent Development of Mechanical Stimuli Detectable Sensors, Their Future, and Challenges: A Review. J.Sens, 23(9) (2023) https://doi.org/10.3390/s23094300

Gao S, He T, Zhang Z, Ao H, Jiang H, Lee C. A motion capturing and energy harvesting hybridized lower‐limb system for rehabilitation and sports applications. Adv.Sci., 8(20), (2021) https://doi.org/10.1002/advs.202101834

Moreddu R, Elsherif M, Adams H, Moschou D, Cordeiro MF, Wolffsohn JS, et al. Integration of paper microfluidic sensors into contact lenses for tear fluid analysis. LOC, 20(21), 3970-9 (2020) https://doi.org/10.1039/D0LC00438C

Tang W, Yin L, Sempionatto JR, Moon JM, Teymourian H, Wang J. Touch‐based stressless cortisol sensing. Adv.mater, 33(18), (2021) https://doi.org/10.1002/adma.202008465

Tai LC, Liaw TS, Lin Y, Nyein HY, Bariya M, Ji W, et al. Wearable sweat band for noninvasive levodopa monitoring. Nano.lett, 19(9), 6346-51 (2019) https://doi.org/10.1021/acs.nanolett.9b02478

Wang L, Fu X, He J, Shi X, Chen T, Chen P, et al. Application challenges in fiber and textile electronics. Adv.mater, 32(5), (2020) https://doi.org/10.1002/adma.201901971

Khatsenko K, Khin Y, Maibach H. Allergic contact dermatitis to components of wearable adhesive health devices. Dermatitis, 31(5), 283-6 (2020) https://doi.org/10.1097/DER.0000000000000575

Gao F, Liu C, Zhang L, Liu T, Wang Z, Song Z, et al. Wearable and flexible electrochemical sensors for sweat analysis: a review. Microsyst.Nanoeng, 9(1), 1-21 (2023) https://doi.org/10.1038/s41378-022-00443-6

Wang L, Fu X, He J, Shi X, Chen T, Chen P, et al. Application challenges in fiber and textile electronics. Adv.mater, 32(5), (2020) https://doi.org/10.1002/adma.201901971

Ahad A, Tahir M, Aman Sheikh M, Ahmed KI, Mughees A, Numani A. Technologies trend towards 5G network for smart health-care using IoT: A review. Sens, 20(14), (2020) https://doi.org/10.3390/s20144047

Pyl J, Dendooven E, Van Eekelen I, den Brinker M, Dotremont H, France A et al. Prevalence and prevention of contact dermatitis caused by FreeStyle Libre: a monocentric experience. Diabetes Care, 43(4), 918-20 (2020) https://doi.org/10.2337/dc19-1354

Mowitz M, Lejding T, Ulriksdotter J, Antelmi A, Bruze M, Svedman C. Further evidence of allergic contact dermatitis caused by 2, 2′-methylenebis (6-tert-butyl-4-methylphenol) monoacrylate, a new sensitizer in the Dexcom G6 glucose sensor. Dermatitis, 33(4), 287-92 (2022) https://doi.org/10.1097/DER.0000000000000767

Seibold A. Minimizing adverse skin reactions to wearable continuous glucose monitoring sensors in patients with diabetes. J Diabetes Sci Technol, 15(3), 713-4 (2021) https://doi.org/10.1177/1932296820984763

Liu H, Wang L, Lin G, Feng Y. Recent progress in the fabrication of flexible materials for wearable sensors. Biomater.Sci,10(3), 614-32 (2022) https://doi.org/10.1039/D1BM01136G

Heikenfeld J, Jajack A, Rogers J, Gutruf P, Tian L, Pan T, et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip, 18(2), 217-48 (2018) https://doi.org/10.1039/C7LC00914C

Cuesta-Frau D, Varela M, Aboy M, Miró-Martínez P. Description of a portable wireless device for high-frequency body temperature acquisition and analysis. Sens, 9(10), 7648-63 (2009) https://doi.org/10.3390/s91007648

Dheman K, Giordano M, Thomas C, Schilk P, Magno M. i-CardiAx: Wearable IoT-Driven System for Early Sepsis Detection Through Long-Term Vital Sign Monitoring. IEEE, 97-109 (2024) https://doi.org/10.48550/arXiv.2407.21433

Xu J, Mohan R, Van Helleputte N, Mitra S. Design and Optimization of ICs for Wearable EEG Sensors. Springer, Cham,163-85 (2018) https://doi.org/10.1007/978-3-319-67723-1_7

Anderson CA, Hare MA, Perdrizet GA. Wound Healing Devices Brief Vignettes. Adv Wound Care, 5(4), 185-190 (2016) https://doi.org/10.1089/wound.2015.0651

Rashid N, Mortlock T, Al Faruque MA. Stress detection using context-aware sensor fusion from wearable devices. IEEE Internet of Things J, 10(16), 14114-27 (2023) https://doi.org/10.48550/arXiv.2303.08215

Phillips C, Liaqat D, Gabel M, de Lara E. WristO2: Reliable peripheral oxygen saturation readings from wrist-worn pulse oximeters. IEEE, 623-629 (2021) https://doi.org/10.48550/arXiv.1906.07545

Narukulla N, Lopes J, Hajari VR, Prasad N, Swamy H. Real Time Data Processing and Predictive Analytics Using Cloud Based Machine Learning. Tuijin Jishu/J. Propuls.Technol, 42(4), 91-102 (2021) https://doi.org/10.52783/tjjpt.v42.i4.6757

Abdel-Salam R, Mostafa R, Hadhood M. Human activity recognition using wearable sensors: review, challenges, evaluation benchmark. Springer,1-15 (2021) https://doi.org/10.48550/arXiv.2101.01665

Kaur R, Shahrestani S, Ruan C. Security and Privacy of Wearable Wireless Sensors in Healthcare: A Systematic Review. J. Comput. Netw. 5, 27-52 (2024) https://doi.org/10.37256/cnc.2120243852

Clarke M, Martin K. Managing cybersecurity risk in healthcare settings. Healthc Manage Forum,37(1),17-20 (2024) https://doi.org/10.1177/08404704231195804

Huang X, Liu Y, Zhou J, Nejad SK, Wong TH, Huang Y, et al. Garment embedded sweat-activated batteries in wearable electronics for continuous sweat monitoring. npj flex. electron, 6(1), (2022) https://doi.org/10.1038/s41528-022-00144-0

Al-Halawani R, Charlton PH, Qassem M, Kyriacou PA. A review of the effect of skin pigmentation on pulse oximeter accuracy. Physiol. Meas, 44(5), (2023) https://doi.org/10.1088/1361-6579/acd51a

Huusko J, Kinnunen UM, Saranto K. Medical device regulation (MDR) in health technology enterprises - perspectives of managers and regulatory professionals. BMC Health Serv Res, 23(1), (2023) https://doi.org/10.1186/s12913-023-09316-8

Terry N P. Assessing the Thin Regulation of Consumer-Facing Health Technologies. J.L.Med.& Ethics, 48(1), 94-102 (2020) https://doi.org/10.1177/1073110520917034

Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine learning, and clinical medicine. N Engl J Med, 375(13), (2021) https://doi.org/10.1056/NEJMp1606181

Published

2025-04-30

How to Cite

Samathoti, P., & Bodagala, S. R. (2025). Advancements in smart wearable patch systems for enhanced wound healing. Journal of Applied Pharmaceutical Research, 13(2), 1-19. https://doi.org/10.69857/joapr.v13i2.667

Issue

Section

Articles