Pharmacophore insights and molecular docking of ciprofloxacin analogues against 2XE1: strategies for reduced antibiotic resistance
DOI:
https://doi.org/10.69857/joapr.v12i6.660Keywords:
Antibiotic Resistance, Ciprofloxacin, Docking Simulations, Arguslab 4.0, Computational Antibiotic DiscoveryAbstract
Background: Antibiotic resistance is a silent pandemic disease that is growing and causing a global threat. Existing antibiotics are less effective against infectious diseases, so we must discover more potent and effective drugs. The latest report from the World Health Organization (WHO) underscores the global nature of the situation, revealing that high levels of antibiotic resistance in bacteria worldwide lead to life-threatening bloodstream infections and resistance to treatment. Methods: This study focuses on the Molecular Docking and Pharmacophore Modeling of Ciprofloxacin and its analogs to explore ligand-protein interactions and identify potent drugs against AMR. Twenty ciprofloxacin analogs, designed using ChemDraw Pro12.0, were docked with the 2XE1 protein. Molecular docking assessed the binding affinity, with Arguslab 4.0 scoring the lowest docking scores to indicate strong interactions and biological activity. Pharmacophore modeling identified essential molecular features like HBA, HBD, and AI for optimal biological activity. Results: The computational screening identified several compounds with improved binding properties, showing greater affinity towards ALA129, TYR149, and PHE88 amino acids, essential for biological activity. Conclusion: The study identifies the best analog of ciprofloxacin, which can effectively combat antibiotic resistance. Compound 13 showed promising docking scores and relevant pharmacophoric features, outperforming the parent ciprofloxacin in binding affinity, suggesting it could be a potent drug candidate against AMR.
Downloads
References
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health, 109, 309–18 (2015) https://doi.org/10.1179/2047773215Y.0000000030.
Vinshia JJ, Padmavathy K, Sudha J, Sathyapriya B. Antibiotic resistance and Staphylococcal super antigenic determinants in methicillin resistant Staphylococcus aureus isolated from anterior nares of dental students. Journal of Applied Pharmaceutical Research, 11, 52–8 (2023) https://doi.org/10.18231/j.joapr.2023.11.5.52.58.
Vinshia JJ, Padmavathy K, Sathyapriya B, Sudha J. Prevalence of methicillin resistant staphylococcus aureus and its SCCmec type among students at a private dental college hospital in Chennai. Journal of Applied Pharmaceutical Research, 11, 19–26 (2023) https://doi.org/10.18231/j.joapr.2023.11.4.19.26.
Ahmed SK, Hussein S, Qurbani K, Ibrahim RH, Fareeq A, Mahmood KA, Mohamed MG. Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health, 2, 100081 (2024) https://doi.org/10.1016/J.GLMEDI.2024.100081.
Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty SCB, Massa S. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit Rev Microbiol, 46, 578–99 (2020) https://doi.org/10.1080/1040841X.2020.1813687.
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, Vol. 11, Page 1946, 11, 1946 (2023) https://doi.org/10.3390/HEALTHCARE11131946.
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, Johnson SC, Browne AJ, Chipeta MG, Fell F, Hackett S, Haines-Woodhouse G, Kashef Hamadani BH, Kumaran EAP, McManigal B, Agarwal R, Akech S, Albertson S, Amuasi J, Andrews J, Aravkin A, Ashley E, Bailey F, Baker S, Basnyat B, Bekker A, Bender R, Bethou A, Bielicki J, Boonkasidecha S, Bukosia J, Carvalheiro C, Castañeda-Orjuela C, Chansamouth V, Chaurasia S, Chiurchiù S, Chowdhury F, Cook AJ, Cooper B, Cressey TR, Criollo-Mora E, Cunningham M, Darboe S, Day NPJ, De Luca M, Dokova K, Dramowski A, Dunachie SJ, Eckmanns T, Eibach D, Emami A, Feasey N, Fisher-Pearson N, Forrest K, Garrett D, Gastmeier P, Giref AZ, Greer RC, Gupta V, Haller S, Haselbeck A, Hay SI, Holm M, Hopkins S, Iregbu KC, Jacobs J, Jarovsky D, Javanmardi F, Khorana M, Kissoon N, Kobeissi E, Kostyanev T, Krapp F, Krumkamp R, Kumar A, Kyu HH, Lim C, Limmathurotsakul D, Loftus MJ, Lunn M, Ma J, Mturi N, Munera-Huertas T, Musicha P, Mussi-Pinhata MM, Nakamura T, Nanavati R, Nangia S, Newton P, Ngoun C, Novotney A, Nwakanma D, Obiero CW, Olivas-Martinez A, Olliaro P, Ooko E, Ortiz-Brizuela E, Peleg AY, Perrone C, Plakkal N, Ponce-de-Leon A, Raad M, Ramdin T, Riddell A, Roberts T, Robotham JV, Roca A, Rudd KE, Russell N, Schnall J, Scott JAG, Shivamallappa M, Sifuentes-Osornio J, Steenkeste N, Stewardson AJ, Stoeva T, Tasak N, Thaiprakong A, Thwaites G, Turner C, Turner P, van Doorn HR, Velaphi S, Vongpradith A, Vu H, Walsh T, Waner S, Wangrangsimakul T, Wozniak T, Zheng P, Sartorius B, Lopez AD, Stergachis A, Moore C, Dolecek C, Naghavi M. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399, 629–55 (2022) https://doi.org/10.1016/S0140-6736(21)02724-0.
Basak S, Singh P, Rajurkar M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. J Pathog, 2016, 1–5 (2016) https://doi.org/10.1155/2016/4065603.
Chan BCL, Ip M, Lau CBS, Lui SL, Jolivalt C, Ganem-Elbaz C, Litaudon M, Reiner NE, Gong H, See RH, Fung KP, Leung PC. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J Ethnopharmacol, 137, 767–73 (2011) https://doi.org/10.1016/J.JEP.2011.06.039.
Tang KWK, Millar BC, Moore JE. Antimicrobial Resistance (AMR). Br J Biomed Sci, 80, (2023) https://doi.org/10.3389/BJBS.2023.11387.
Dudhe B, Kamdi NM, Giradkar A, Astankar P, Mankar N, Ghotkar U. Assessment of knowledge, attitude, and practices on antibiotic use and its resistance among medical students in tertiary care teaching hospitals of Maharashtra. Journal of Applied Pharmaceutical Research, 11, 26–33 (2023) https://doi.org/10.18231/j.joapr.2023.11.5.26.33.
Dadgostar P. Antimicrobial Resistance: Implications and Costs. Infect Drug Resist, 12, 3903 (2019) https://doi.org/10.2147/IDR.S234610.
Taneja N, Sharma M. Antimicrobial resistance in the environment: The Indian scenario. Indian J Med Res, 149, 119 (2019) https://doi.org/10.4103/IJMR.IJMR_331_18.
Chauhan AS, Kathuria S, Gehlot A, Sunil G. Revolutionizing Drug Discovery: Unleashing AI’s Potential in Pharmaceutical Innovation. Communications in Computer and Information Science, 2026 CCIS, 39–50 (2024) https://doi.org/10.1007/978-3-031-53082-1_4.
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, Vol. 11, Page 1946, 11, 1946 (2023) https://doi.org/10.3390/HEALTHCARE11131946.
Aslam B, Khurshid M, Arshad MI, Muzammil S, Rasool M, Yasmeen N, Shah T, Chaudhry TH, Rasool MH, Shahid A, Xueshan X, Baloch Z. Antibiotic Resistance: One Health One World Outlook. Front Cell Infect Microbiol, 11, 771510 (2021) https://doi.org/10.3389/FCIMB.2021.771510/BIBTEX.
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep, 21, (2020) https://doi.org/10.15252/EMBR.202051034.
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare (Basel), 11, (2023) https://doi.org/10.3390/HEALTHCARE11131946.
Cox G, Wright GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol, 303, 287–92 (2013) https://doi.org/10.1016/J.IJMM.2013.02.009.
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol, 4, 482 (2018) https://doi.org/10.3934/MICROBIOL.2018.3.482.
Bobate S, Mahalle S, Dafale NA, Bajaj A. Emergence of environmental antibiotic resistance: Mechanism, monitoring and management. Environmental Advances, 13, 100409 (2023) https://doi.org/10.1016/J.ENVADV.2023.100409 .
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, Johnson SC, Browne AJ, Chipeta MG, Fell F, Hackett S, Haines-Woodhouse G, Kashef Hamadani BH, Kumaran EAP, McManigal B, Agarwal R, Akech S, Albertson S, Amuasi J, Andrews J, Aravkin A, Ashley E, Bailey F, Baker S, Basnyat B, Bekker A, Bender R, Bethou A, Bielicki J, Boonkasidecha S, Bukosia J, Carvalheiro C, Castañeda-Orjuela C, Chansamouth V, Chaurasia S, Chiurchiù S, Chowdhury F, Cook AJ, Cooper B, Cressey TR, Criollo-Mora E, Cunningham M, Darboe S, Day NPJ, De Luca M, Dokova K, Dramowski A, Dunachie SJ, Eckmanns T, Eibach D, Emami A, Feasey N, Fisher-Pearson N, Forrest K, Garrett D, Gastmeier P, Giref AZ, Greer RC, Gupta V, Haller S, Haselbeck A, Hay SI, Holm M, Hopkins S, Iregbu KC, Jacobs J, Jarovsky D, Javanmardi F, Khorana M, Kissoon N, Kobeissi E, Kostyanev T, Krapp F, Krumkamp R, Kumar A, Kyu HH, Lim C, Limmathurotsakul D, Loftus MJ, Lunn M, Ma J, Mturi N, Munera-Huertas T, Musicha P, Mussi-Pinhata MM, Nakamura T, Nanavati R, Nangia S, Newton P, Ngoun C, Novotney A, Nwakanma D, Obiero CW, Olivas-Martinez A, Olliaro P, Ooko E, Ortiz-Brizuela E, Peleg AY, Perrone C, Plakkal N, Ponce-de-Leon A, Raad M, Ramdin T, Riddell A, Roberts T, Robotham JV, Roca A, Rudd KE, Russell N, Schnall J, Scott JAG, Shivamallappa M, Sifuentes-Osornio J, Steenkeste N, Stewardson AJ, Stoeva T, Tasak N, Thaiprakong A, Thwaites G, Turner C, Turner P, van Doorn HR, Velaphi S, Vongpradith A, Vu H, Walsh T, Waner S, Wangrangsimakul T, Wozniak T, Zheng P, Sartorius B, Lopez AD, Stergachis A, Moore C, Dolecek C, Naghavi M. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399, 629–55 (2022) https://doi.org/10.1016/S0140-6736(21)02724-0.
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals 2023, Vol. 16, Page 1615, 16, 1615 (2023) https://doi.org/10.3390/PH16111615.
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, Vol. 11, Page 1946, 11, 1946 (2023) https://doi.org/10.3390/HEALTHCARE11131946.
Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nature Reviews Microbiology 2021 20:5, 20, 257–69 (2021) https://doi.org/10.1038/s41579-021-00649-x.
Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran T Bin, Dhama K, Ripon MKH, Gajdács M, Sahibzada MUK, Hossain MJ, Koirala N. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health, 14, 1750–66 (2021) https://doi.org/10.1016/J.JIPH.2021.10.020.
Zhou G, Wang Q, Wang Y, Wen X, Peng H, Peng R, Shi Q, Xie X, Li L. Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria. Microorganisms 2023, Vol. 11, Page 1690, 11, 1690 (2023) https://doi.org/10.3390/MICROORGANISMS11071690.
Suay-García B, Pérez-Gracia MT. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 2019, Vol. 8, Page 122, 8, 122 (2019) https://doi.org/10.3390/ANTIBIOTICS8030122.
Lavigne JP, Sotto A, Nicolas-Chanoine MH, Bouziges N, Pagès JM, Davin-Regli A. An adaptive response of Enterobacter aerogenes to imipenem: regulation of porin balance in clinical isolates. Int J Antimicrob Agents, 41, 130–6 (2013) https://doi.org/10.1016/J.IJANTIMICAG.2012.10.010.
Zhang F, Cheng W. The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics 2022, Vol. 11, Page 1215, 11, 1215 (2022) https://doi.org/10.3390/ANTIBIOTICS11091215.
Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol, 33, 300–5 (2017) https://doi.org/10.4103/JOACP.JOACP_349_15.
Huang L, Wu C, Gao H, Xu C, Dai M, Huang L, Hao H, Wang X, Cheng G. Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics 2022, Vol. 11, Page 520, 11, 520 (2022) https://doi.org/10.3390/ANTIBIOTICS11040520.
Kourtesi C, Ball AR, Huang Y-Y, Jachak SM, Mariano D, Vera A, Khondkar P, Gibbons S, Hamblin MR, Tegos GP. Microbial Efflux Systems and Inhibitors: Approaches to Drug Discovery and the Challenge of Clinical Implementation. Open Microbiol J, 7, 34–52 (2013) https://doi.org/10.2174/1874285801307010034.
Beheshti M, Ardebili A, Beheshti F, Lari AR, Siyadatpanah A, Pournajaf A, Gautam D, Dolma KG, Nissapatorn V. Tetracycline resistance mediated by tet efflux pumps in clinical isolates of Acinetobacter baumannii. Rev Inst Med Trop Sao Paulo, 62, e88 (2020) https://doi.org/10.1590/S1678-9946202062088.
Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol, 9, (2018) https://doi.org/10.3389/FMICB.2018.02928.
Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev, 41, 430–49 (2017) https://doi.org/10.1093/FEMSRE/FUX007.
Jasim SA, Ahmed AT, Kubaev A, Kyada A, Alshahrani MY, Sharma S, Al-Hetty HRAK, Vashishth R, Chauhan AS, Abosaoda MK. Exosomal microRNA as a key regulator of PI3K/AKT pathways in human tumors. Medical Oncology 2024 41:11, 41, 1–17 (2024) https://doi.org/10.1007/S12032-024-02529-9.
Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to Macrolide Antibiotics in Public Health Pathogens. Cold Spring Harb Perspect Med, 6, a025395 (2016) https://doi.org/10.1101/CSHPERSPECT.A025395.
Chaudhari R, Singh K, Kodgire P. Biochemical and molecular mechanisms of antibiotic resistance in Salmonella spp. Res Microbiol, 174, 103985 (2023) https://doi.org/10.1016/J.RESMIC.2022.103985.
Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology 2014 13:1, 13, 42–51 (2014) https://doi.org/10.1038/nrmicro3380.
Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol, 431, 3472–500 (2019) https://doi.org/10.1016/J.JMB.2019.04.002.
Pandey D, Singhal N, Kumar M. β-LacFamPred: An online tool for prediction and classification of β-lactamase class, subclass, and family. Front Microbiol, 13, 1039687 (2023) https://doi.org/10.3389/FMICB.2022.1039687/BIBTEX.
Thangavelu L, Imran M, Alsharari SH, Abdulaziz AM, Alawlaqi AM, Kamal M, Rekha MM, Kaur M, Soothwal P, Arora I, Kumar MR, Chauhan AS. Exploring hypoxia-induced ncRNAs as biomarkers and therapeutic targets in lung cancer. Pathol Res Pract, 263, 155613 (2024) https://doi.org/10.1016/J.PRP.2024.155613.
Eiamphungporn W, Schaduangrat N, Malik AA, Nantasenamat C. Tackling the Antibiotic Resistance Caused by Class A β-Lactamases through the Use of β-Lactamase Inhibitory Protein. International Journal of Molecular Sciences 2018, Vol. 19, Page 2222, 19, 2222 (2018) https://doi.org/10.3390/IJMS19082222.
Bonomo RA. β-Lactamases: A Focus on Current Challenges. Cold Spring Harb Perspect Med, 7, a025239 (2017) https://doi.org/10.1101/CSHPERSPECT.A025239.
De Angelis G, Giacomo P Del, Posteraro B, Sanguinetti M, Tumbarello M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. International Journal of Molecular Sciences 2020, Vol. 21, Page 5090, 21, 5090 (2020) https://doi.org/10.3390/IJMS21145090.
Kumar V, Yasmeen N, Pandey A, Ahmad Chaudhary A, Alawam AS, Ahmad Rudayni H, Islam A, Lakhawat SS, Sharma PK, Shahid M. Antibiotic adjuvants: synergistic tool to combat multi-drug resistant pathogens. Front Cell Infect Microbiol, 13, 1293633 (2023) https://doi.org/10.3389/FCIMB.2023.1293633/BIBTEX.
Rezzoagli C, Archetti M, Mignot I, Baumgartner M, Kümmerli R. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol, 18, e3000805 (2020) https://doi.org/10.1371/JOURNAL.PBIO.3000805.
Li Q, Cebrián R, Montalbán-López M, Ren H, Wu W, Kuipers OP. Outer-membrane-acting peptides and lipid II-targeting antibiotics cooperatively kill Gram-negative pathogens. Communications Biology 2021 4:1, 4, 1–11 (2021) https://doi.org/10.1038/s42003-020-01511-1.
Manohar P, Madurantakam Royam M, Loh B, Bozdogan B, Nachimuthu R, Leptihn S. Synergistic Effects of Phage-Antibiotic Combinations against Citrobacter amalonaticus. ACS Infect Dis, 8, 59–65 (2022) https://doi.org/10.1021/ACSINFECDIS.1C00117/ASSET/IMAGES/MEDIUM/ID1C00117_M001.GIF.
Wei J, Peng N, Liang Y, Li K, Li Y. Phage Therapy: Consider the Past, Embrace the Future. Applied Sciences 2020, Vol. 10, Page 7654, 10, 7654 (2020) https://doi.org/10.3390/APP10217654.
Stone E, Campbell K, Grant I, McAuliffe O. Understanding and Exploiting Phage–Host Interactions. Viruses 2019, Vol. 11, Page 567, 11, 567 (2019) https://doi.org/10.3390/V11060567.
Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe, 25, 219–32 (2019) https://doi.org/10.1016/j.chom.2019.01.014.
Abedon ST, Danis-Wlodarczyk KM, Wozniak DJ. Phage cocktail development for bacteriophage therapy: Toward improving spectrum of activity breadth and depth. Pharmaceuticals, 14, 1019 (2021) https://doi.org/10.3390/PH14101019/S1.
Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, Hatfull GF, Spencer H. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature Medicine 2019 25:5, 25, 730–3 (2019) https://doi.org/10.1038/s41591-019-0437-z.
Kiga K, Tan XE, Ibarra-Chávez R, Watanabe S, Aiba Y, Sato’o Y, Li FY, Sasahara T, Cui B, Kawauchi M, Boonsiri T, Thitiananpakorn K, Taki Y, Azam AH, Suzuki M, Penadés JR, Cui L. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nature Communications 2020 11:1, 11, 1–11 (2020) https://doi.org/10.1038/s41467-020-16731-6.
Bao J, Wu N, Zeng Y, Chen L, Li L, Yang L, Zhang Y, Guo M, Li L, Li J, Tan D, Cheng M, Gu J, Qin J, Liu J, Li S, Pan G, Jin X, Yao B, Guo X, Zhu T, Le S. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae. Emerg Microbes Infect, 9, 771–4 (2020) https://doi.org/10.1080/22221751.2020.1747950.
Nir-Paz R, Gelman D, Khouri A, Sisson BM, Fackler J, Alkalay-Oren S, Khalifa L, Rimon A, Yerushalmy O, Bader R, Amit S, Coppenhagen-Glazer S, Henry M, Quinones J, Malagon F, Biswas B, Moses AE, Merril G, Schooley RT, Brownstein MJ, Weil YA, Hazan R. Successful Treatment of Antibiotic-resistant, Poly-microbial Bone Infection With Bacteriophages and Antibiotics Combination. Clin Infect Dis, 69, 2015–8 (2019) https://doi.org/10.1093/CID/CIZ222.
Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol, 11, 668632 (2021) https://doi.org/10.3389/FCIMB.2021.668632/BIBTEX.
Zhang C, Yang M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics 2022, Vol. 11, Page 349, 11, 349 (2022) https://doi.org/10.3390/ANTIBIOTICS11030349.
Wang X, Feng L, Li M, Dong W, Luo X, Shang D. Membrane-active and DNA binding related double-action antimycobacterial mechanism of antimicrobial peptide W3R6 and its synthetic analogs. Biochimica et Biophysica Acta (BBA) - General Subjects, 1867, 130415 (2023) https://doi.org/10.1016/J.BBAGEN.2023.130415.
Zhong C, Zhu N, Zhu Y, Liu T, Gou S, Xie J, Yao J, Ni J. Antimicrobial peptides conjugated with fatty acids on the side chain of D-amino acid promises antimicrobial potency against multidrug-resistant bacteria. European Journal of Pharmaceutical Sciences, 141, 105123 (2020) https://doi.org/10.1016/J.EJPS.2019.105123.
Shi J, Chen C, Wang D, Tong Z, Wang Z, Liu Y, Shi J;, Chen C;, Wang D;, Tong Z;, Wang Z;, Liu Y. Amphipathic Peptide Antibiotics with Potent Activity against Multidrug-Resistant Pathogens. Pharmaceutics 2021, Vol. 13, Page 438, 13, 438 (2021) https://doi.org/10.3390/PHARMACEUTICS13040438.
Hossain MA, Dewan P, Kawsar SMA, Dangwal A, Kalra K, Kalra JM, Ashok PK, Parashar T, Jakhmola V, Saha S, Ansori ANM. Chemical Descriptors, ADMET, Molecular Docking and Molecular Dynamics Simulation of Mannopyranoside Derivatives against Smallpox Virus Proteins. Advanced Journal of Chemistry, Section A, 8, 1–16 (2025) https://doi.org/10.48309/AJCA.2025.459071.1531.
Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, Ugwuja EI, Aja PM. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports 2023 13:1, 13, 1–18 (2023) https://doi.org/10.1038/s41598-023-40160-2.
Sarkar A, Concilio S, Sessa L, Marrafino F, Piotto S. Advancements and novel approaches in modified AutoDock Vina algorithms for enhanced molecular docking. Results Chem, 7, 101319 (2024) https://doi.org/10.1016/J.RECHEM.2024.101319.
Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein–ligand docking using GOLD. Proteins: Structure, Function, and Bioinformatics, 52, 609–23 (2003) https://doi.org/10.1002/PROT.10465.
Liao C, Sitzmann M, Pugliese A, Nicklaus MC. Software and resources for computational medicinal chemistry. http://dx.doi.org/10.4155/fmc.11.63, 3, 1057–85 (2011) https://doi.org/10.4155/FMC.11.63.
Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, Ugwuja EI, Aja PM. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports 2023 13:1, 13, 1–18 (2023) https://doi.org/10.1038/s41598-023-40160-2.
Renukadevi J, Karthikha VS, Helinto JS, Prena D, A AR. Molecular dynamic simulation studies of hemidesmus indicus-derived oleanen-3-yl acetate in stat3 based tumor signaling. Journal of Applied Pharmaceutical Research, 12, 124–32 (2024) https://doi.org/10.69857/joapr.v12i5.670.
Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. Prog Med Chem, 60, 273–343 (2021) https://doi.org/10.1016/BS.PMCH.2021.01.004.
Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences 2019, Vol. 20, Page 4331, 20, 4331 (2019) https://doi.org/10.3390/IJMS20184331.
Sharma V, Panwar P, Verma P, Rahman A, Tomar B, Saha S, Gairola N, Jakhmola V, Dangwal A, Ansori ANM. Molecular Docking, Synthesis and In vitro Alpha Amylase Activities of Newer Generation Imidazolo-Pyrimidine Derivatives. Advanced Journal of Chemistry, Section A, 7, 630–42 (2024) https://doi.org/10.48309/AJCA.2024.454578.1517.
Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP. Key Topics in Molecular Docking for Drug Design. International Journal of Molecular Sciences 2019, Vol. 20, Page 4574, 20, 4574 (2019) https://doi.org/10.3390/IJMS20184574.
Muhammed MT, Aki-Yalcin E. Molecular Docking: Principles, Advances, and Its Applications in Drug Discovery. Lett Drug Des Discov, 21, 480–95 (2022) https://doi.org/10.2174/1570180819666220922103109.
Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, Christie C, Duarte JM, Dutta S, Feng Z, Ghosh S, Goodsell DS, Green RK, Guranovic V, Guzenko D, Hudson BP, Liang Y, Lowe R, Peisach E, Periskova I, Randle C, Rose A, Sekharan M, Shao C, Tao YP, Valasatava Y, Voigt M, Westbrook J, Young J, Zardecki C, Zhuravleva M, Kurisu G, Nakamura H, Kengaku Y, Cho H, Sato J, Kim JY, Ikegawa Y, Nakagawa A, Yamashita R, Kudou T, Bekker GJ, Suzuki H, Iwata T, Yokochi M, Kobayashi N, Fujiwara T, Velankar S, Kleywegt GJ, Anyango S, Armstrong DR, Berrisford JM, Conroy MJ, Dana JM, Deshpande M, Gane P, Gáborová R, Gupta D, Gutmanas A, Koča J, Mak L, Mir S, Mukhopadhyay A, Nadzirin N, Nair S, Patwardhan A, Paysan-Lafosse T, Pravda L, Salih O, Sehnal D, Varadi M, Vǎreková R, Markley JL, Hoch JC, Romero PR, Baskaran K, Maziuk D, Ulrich EL, Wedell JR, Yao H, Livny M, Ioannidis YE. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res, 47, D520–8 (2019) https://doi.org/10.1093/NAR/GKY949.
Burley SK, Berman HM, Duarte JM, Feng Z, Flatt JW, Hudson BP, Lowe R, Peisach E, Piehl DW, Rose Y, Sali A, Sekharan M, Shao C, Vallat B, Voigt M, Westbrook JD, Young JY, Zardecki C. Protein Data Bank: A Comprehensive Review of 3D Structure Holdings and Worldwide Utilization by Researchers, Educators, and Students. Biomolecules, 12, 1425 (2022) https://doi.org/10.3390/BIOM12101425/S1.
Işık EB, Serçinoğlu O. Unraveling the ligand specificity and promiscuity of the Staphylococcus aureus NorA efflux pump: a computational study. J Biomol Struct Dyn, (2024) https://doi.org/10.1080/07391102.2024.2326670.
Jiao F, Bao Y, Li M, Zhang Y, Zhang F, Wang P, Tao J, Tong HHY, Guo J. Unraveling the mechanism of ceftaroline-induced allosteric regulation in penicillin-binding protein 2a: insights for novel antibiotic development against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 67, (2023) https://doi.org/10.1128/AAC.00895-23.
Kumar H, Manoharan A, Ramaiah S. Unravelling the nsSNP mediated mechanism of antibiotic resistance in Salmonella enterica serovar Typhi and identification of potential therapeutic alternatives: A genomics and structural bioinformatics study. Clin Epidemiol Glob Health, 24, 101407 (2023) https://doi.org/10.1016/J.CEGH.2023.101407.
Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health, 10, 1025633 (2022) https://doi.org/10.3389/FPUBH.2022.1025633/BIBTEX.
Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in pseudomonas aeruginosa: New approaches to an old problem. J Med Microbiol, 68, 1–10 (2019) https://doi.org/10.1099/JMM.0.000873/CITE/REFWORKS.
Peeva MI, Georgieva MG, Balacheva AA, Ponticelli M, Bogdanov IP, Kolev T, Milella L, Stammler HG, Tzvetkov NT. Crystal Structures, Molecular Docking and In Vitro Investigations of Two 4-Substituted 2-(5,5-dimethyl-3-styrylcyclohex-2-enylidene)malononitrile Derivatives as Potential Topoisomerase II Inhibitors. Crystals (Basel), 14, 496 (2024) https://doi.org/10.3390/CRYST14060496/S1.

Published
How to Cite
Issue
Section
Copyright (c) 2024 Sanjana Katlaria, Ashish Singh Chauhan, Krishna Kumar, Mohit Kumar, Bhumika Chauhan, Vikash Jakhmola

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.