Exploring the neuroprotective role of probiotics in the therapeutic interventions of cognitive decline

Authors

  • J Renukadevi Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, SIMATS, Thandalam, Chennai-602105, India https://orcid.org/0000-0002-4327-3661
  • R Velmurugan Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, SIMATS, Thandalam, Chennai-602105, India
  • G Nandhinidevi Centre for Food Technology, Anna University, Chennai-600025, India
  • V S Karthikha Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, SIMATS, Thandalam, Chennai-602105, India
  • V Sri Vaishnavi Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, SIMATS, Thandalam, Chennai-602105, India

DOI:

https://doi.org/10.69857/joapr.v12i5.648

Keywords:

Cognitive decline, mitochondrial dysfunction, neuroinflammation, neurodegeneration, probiotics, tau protein

Abstract

Background: Cognitive decline is developing as a critical alarm in public health concerns initiated by neuroinflammation, an indispensable contributing factor in neurodegenerative diseases. Probiotics and postbiotics have evolved as key therapeutic factors in treating neuroinflammation by modulating neuroinflammatory pathways and therapeutically controlling cognitive decline by its influence on the gut-brain axis. Methodology: This comprehensive review integrates the current status of the insight into the molecular mechanisms of probiotics that promote cognitive health. The review explains their synergistic effects on gut microbiota and their influence on neuroinflammation, mitochondrial function, neurotransmitter levels, and insulin sensitivity. It also explores preclinical and clinical studies involving the neuroprotective benefits of specific probiotic strains. Results: Probiotics are reported to alter gut microbiota by supporting neuroinflammation, thus enhancing cognitive function. The key findings were their role in reducing plaque formation and controlling tau protein hyperphosphorylation, thus improving mitochondrial efficiency. Recent research reveals that strains such as Lactobacillus and Bifidobacterium have proven efficacy in reducing tau phosphorylation and amyloid β pathology in animal models. In addition, probiotics improve insulin sensitivity and neurotransmitter levels, leading to improved cognitive outcomes. Discussion: The microbiota-gut-brain axis is essential in studying the neuroprotective role of probiotics. Probiotics have been reported for their ability to reduce neuroinflammatory markers, leading to improved neurogenesis in the brain's hippocampus. Thus transforming these research findings to clinical therapies requires further research to support and to overcome the limitations and exploring the complete mechanism involved.

Conclusion: Probiotics thus being explored to develop as new therapeutic interventions in cognitive decline, with substantial preclinical evidence supporting their benefits. Still persistent research is essential to transform these findings in clinical  trials in the development of  probiotic-based therapies for cognitive health.

Downloads

Download data is not yet available.

References

Elandia PP. Global and regional spending on dementia care from 2000-2019 and expected future health spending scenarios from 2020-2050: an economic modelling exercise. EClinicalMedicine, 45, (2022). https://doi.org/10.1016/j.eclinm.2022.101337.

Tian Z, Ji X, Liu J. Neuroinflammation in vascular cognitive impairment and dementia: Current evidence, advances, and prospects. Int. J. Mol. Sci., 23, 6224 (2022). https://doi.org/10.3390/ijms23116224.

Fekete M, Lehoczki A, Major D, Fazekas-Pongor V, Csípő T, Tarantini S, Csizmadia Z, Varga JT. Exploring the influence of gut–brain axis modulation on cognitive health: A comprehensive review of prebiotics, probiotics, and symbiotics. Nutrients, 16, 789 (2024). https://doi.org/10.3390/nu16060789

Zhu X, Li B, Lou P, Dai T, Chen Y, Zhuge A, Yuan Y, Li L. The relationship between the gut microbiome and neurodegenerative diseases. Neurosci. Bull., 37, 1510–22 (2021). https://doi.org/10.1007/s12264-021-00730-8.

Kwon HS, Koh S-H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener., 9, (2020). https://doi.org/10.1186/s40035-020-00221-2

Hambali A, Kumar J, Hashim NFM, Maniam S, Mehat MZ, Cheema MS, Mustapha M, Adenan MI, Stanslas J, Hamid HA. Hypoxia-Induced Neuroinflammation in Alzheimer’s Disease: Potential Neuroprotective Effects of Centella asiatica. Front. Physiol., 12, (2021). https://doi.org/10.3389/fphys.2021.712317 de Oliveira J, Kucharska E, Garcez ML, Rodrigues MS, Quevedo J, Moreno-Gonzalez I, Budni J. Inflammatory cascade in Alzheimer’s disease pathogenesis: A review of experimental findings. Cells, 10, 2581 (2021). https://doi.org/10.3390/cells10102581.

Pathak D, Sriram K. Molecular mechanisms underlying neuroinflammation elicited by occupational injuries and toxicants. Int. J. Mol. Sci., 24, 2272 (2023). https://doi.org/10.3390/ijms24032272

Tegegne BA, Kebede B. Probiotics, their prophylactic and therapeutic applications in human health development: A review of the literature. Heliyon, 8, e09725 (2022). https://doi.org/10.1016/j.heliyon.2022.e09725.

Shahbazi R, Yasavoli-Sharahi H, Alsadi N, Ismail N, Matar C. Probiotics in treatment of viral respiratory infections and neuroinflammatory disorders. Molecules, 25, 4891 (2020). https://doi.org/10.3390/molecules25214891

Głowacka P, Oszajca K, Pudlarz A, Szemraj J, Witusik-Perkowska M. Postbiotics as molecules targeting cellular events of aging brain—the role in pathogenesis, prophylaxis and treatment of neurodegenerative diseases. Nutrients, 16, 2244 (2024). https://doi.org/10.3390/nu16142244

Cheng Y-J, Lin C-H, Lane H-Y. Involvement of cholinergic, adrenergic, and glutamatergic network modulation with cognitive dysfunction in Alzheimer’s disease. Int. J. Mol. Sci., 22, 2283 (2021). https://doi.org/10.3390/ijms22052283.

Petrella C, Strimpakos G, Torcinaro A, Middei S, Ricci V, Gargari G, Mora D, De Santa F, Farioli-Vecchioli S. Proneurogenic and neuroprotective effect of a multi strain probiotic mixture in a mouse model of acute inflammation: Involvement of the gut-brain axis. Pharmacol. Res., 172, 105795 (2021). https://doi.org/10.1016/j.phrs.2021.105795

Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O’Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-gut-brain axis. Physiol. Rev., 99, 1877–2013 (2019). https://doi.org/10.1152/physrev.00018.2018

Salami M, Soheili M. The microbiota-gut- hippocampus axis. Front. Neurosci., 16, (2022). https://doi.org/10.3389/fnins.2022.1065995

Solanki R, Karande A, Ranganathan P. Emerging role of gut microbiota dysbiosis in neuroinflammation and neurodegeneration. Front. Neurol., 14, (2023). https://doi.org/10.3389/fneur.2023.1149618.

Flynn CM, Yuan Q. Probiotic supplement as a promising strategy in early tau pathology prevention: Focusing on GSK-3β? Front. Neurosci., 17, (2023). https://doi.org/10.3389/fnins.2023.1159314

Mishra V, Yadav D, Solanki KS, Koul B, Song M. A review on the protective effects of probiotics against Alzheimer’s disease. Biology (Basel), 13, 8 (2023). https://doi.org/10.3390/biology13010008

Šimić G, Tkalčić M, Vukić V, Mulc D, Španić E, Šagud M, Olucha-Bordonau FE, Vukšić M, R. Hof P. Understanding emotions: Origins and roles of the amygdala. Biomolecules, 11, 823 (2021). https://doi.org/10.3390/biom11060823.

Choi T-Y, Choi YP, Koo JW. Mental disorders linked to crosstalk between the gut microbiome and the brain. Exp. Neurobiol., 29, 403–16 (2020). https://doi.org/10.5607/en20047.

Johnson D, Letchumanan V, Thum CC, Thurairajasingam S, Lee L-H. A microbial-based approach to mental health: The potential of probiotics in the treatment of depression. Nutrients, 15, 1382 (2023). https://doi.org/10.3390/nu15061382

Yang X, Yu D, Xue L, Li H, Du J. Probiotics modulate the microbiota–gut–brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm. Sin. B., 10, 475–87 (2020). https://doi.org/10.1016/j.apsb.2019.07.001

Xu F, Fu Y, Sun T-Y, Jiang Z, Miao Z, Shuai M, Gou W, Ling C-W, Yang J, Wang J, Chen Y-M, Zheng J-S. The interplay between host genetics and the gut microbiome reveals common and distinct microbiome features for complex human diseases. Microbiome, 8, (2020). https://doi.org/10.1186/s40168-020-00923-9

Targonskaya A, Wieczorek K, Maslowski K. Endogenous hormones and cognitive decline in women: Unveiling the complex interplay. Women (Basel), 4, 116–29 (2024). https://doi.org/10.3390/women4020009

Hou K, Wu Z-X, Chen X-Y, Wang J-Q, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen Z-S. Microbiota in health and diseases. Signal Transduct. Target. Ther., 7, (2022). https://doi.org/10.1038/s41392-022-00974-4

Ghosh TS, Shanahan F, O’Toole PW. The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol., 19, 565–84 (2022). https://doi.org/10.1038/s41575-022-00605-x.

Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut Microbiota and effects on cognition in neurological disorders. Nutrients, 13, 2099 (2021). https://doi.org/10.3390/nu13062099

Duarte FV, Ciampi D, Duarte CB. Mitochondria as central hubs in synaptic modulation. Cell. Mol. Life Sci., 80, (2023). https://doi.org/10.1007/s00018-023-04814-8.

Ghezzi L, Cantoni C, Rotondo E, Galimberti D. The gut microbiome–brain crosstalk in neurodegenerative diseases. Biomedicines, 10, 1486 (2022). https://doi.org/10.3390/biomedicines10071486

Wolosowicz M, Prokopiuk S, Kaminski TW. Recent advances in the treatment of Insulin Resistance targeting molecular and metabolic pathways: Fighting a losing battle? Medicina (Kaunas), 58, 472 (2022). https://doi.org/10.3390/medicina58040472

AkbariRad M, Shariatmaghani SS, Razavi BM, Majd HM, Shakhsemampour Z, Sarabi M, Jafari M, Azarkar S, Ghalibaf AM, Khorasani ZM. Probiotics for glycemic and lipid profile control of the pre-diabetic patients: a randomized, double-blinded, placebo-controlled clinical trial study. Diabetol. Metab. Syndr., 15, (2023). https://doi.org/10.1017/S095442241700018X

Martínez-Guardado I, Arboleya S, Grijota FJ, Kaliszewska A, Gueimonde M, Arias N. The therapeutic role of exercise and probiotics in stressful brain conditions. Int. J. Mol. Sci., 23, 3610 (2022). https://doi.org/10.3390/ijms23073610

Kim AB, Arvanitakis Z. Insulin resistance, cognition, and Alzheimer disease. Obesity (Silver Spring), 31, 1486–98 (2023). https://doi.org/10.1002/oby.23761.

Lamptey RNL, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci., 23, 1851 (2022). https://doi.org/10.3390/ijms23031851

Obinata M, Maeshima H, Yoshinari N, Natume S, Saida T, Yasuda S, Ichikawa T, Suzuki T, Baba H. Apolipoprotein E4 increases the risk of depression recurrence. J. Affect. Disord., 295, 628–31 (2021). https://doi.org/10.1186/s40035-020-00221-2

Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021 Jan;20(1):68-80. https://doi.org/10.1016/S1474-4422(20)30412-9.

Yassine HN, Self W, Kerman BE, Santoni G, Navalpur Shanmugam N, Abdullah L, Golden LR, Fonteh AN, Harrington MG, Gräff J, Gibson GE, Kalaria R, Luchsinger JA, Feldman HH, Swerdlow RH, Johnson LA, Albensi BC, Zlokovic BV, Tanzi R, Cunnane S, Samieri C, Scarmeas N, Bowman GL. Nutritional metabolism and cerebral bioenergetics in Alzheimer’s disease and related dementias. Alzheimers. Dement., 19, 1041–66 (2023). https://doi.org/10.1002/alz.12845

Sędzikowska A, Szablewski L. Insulin and insulin resistance in Alzheimer’s disease. Int. J. Mol. Sci., 22, 9987 (2021). https://doi.org/10.3390/ijms22189987

Stanciu GD, Bild V, Ababei DC, Rusu RN, Cobzaru A, Paduraru L, Bulea D. Link between diabetes and Alzheimer’s disease due to the shared amyloid aggregation and deposition involving both neurodegenerative changes and neurovascular damages. J. Clin. Med., 9, 1713 (2020). https://doi.org/10.3390/jcm9061713.

Fiory F, Perruolo G, Cimmino I, Cabaro S, Pignalosa FC, Miele C, Beguinot F, Formisano P, Oriente F. The relevance of insulin action in the dopaminergic system. Front. Neurosci., 13, (2019). https://doi.org/10.3389/fnins.2019.00868.

Wiatrak B, Balon K, Jawień P, Bednarz D, Jęśkowiak I, Szeląg A. The role of the Microbiota-gut-brain axis in the development of Alzheimer’s disease. Int. J. Mol. Sci., 23, 4862 (2022). https://doi.org/10.3390/ijms23094862

Wei Z, Koya J, Reznik SE. Insulin resistance exacerbates Alzheimer disease via multiple mechanisms. Front. Neurosci., 15, (2021). https://doi.org/10.3389/fnins.2021.687157

Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han HS, Raza C, De Aguilar J-LG. Adult neurogenesis. Neural Regen. Res., 19, 6–15 (2024). https://doi.org/10.4103/1673-5374.375317.

Misrani A, Tabassum S, Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci., 13, (2021). https://doi.org/10.3389/fnagi.2021.617588

Sehar U, Rawat P, Reddy AP, Kopel J, Reddy PH. Amyloid beta in aging and Alzheimer’s disease. Int. J. Mol. Sci., 23, 12924 (2022). https://doi.org/10.3390/ijms232112924.

Iwata R, Vanderhaeghen P. Regulatory roles of mitochondria and metabolism in neurogenesis. Curr. Opin. Neurobiol., 69, 231–40 (2021). https://doi.org/10.1016/j.conb.2021.05.003.

Khacho M, Clark A, Svoboda DS, MacLaurin JG, Lagace DC, Park DS, Slack RS. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Hum. Mol. Genet., 26, 3327–41 (2017). https://doi.org/10.1093/hmg/ddx217

Jo D, Kim BC, Cho KA, Song J. The cerebral effect of ammonia in brain aging: Blood–brain barrier breakdown, mitochondrial dysfunction, and neuroinflammation. J. Clin. Med., 10, 2773 (2021). https://doi.org/10.3390/jcm10132773.

Simmons SC, Grecco GG, Atwood BK, Nugent FS. Effects of prenatal opioid exposure on synaptic adaptations and behaviors across development. Neuropharmacology, 222, 109312 (2023). https://doi.org/10.1016/j.neuropharm.2022.109312

Kaliszewska A, Allison J, Martini M, Arias N. The interaction of diet and mitochondrial dysfunction in aging and cognition. Int. J. Mol. Sci., 22, 3574 (2021). https://doi.org/10.3390/ijms22073574.

Liang J, Wang C, Zhang H, Huang J, Xie J, Chen N. Exercise-induced benefits for Alzheimer’s disease by stimulating mitophagy and improving mitochondrial function. Front. Aging Neurosci., 13, (2021). https://doi.org/10.3389/fnagi.2021.755665.

Kolonics A, Bori Z, Torma F, Abraham D, Fehér J, Radak Z. Exercise combined with postbiotics treatment results in synergistic improvement of mitochondrial function in the brain of male transgenic mice for Alzheimer’s disease. BMC Neurosci., 24, (2023). https://doi.org/10.1186/s12868-023-00836-x.

Mahaman YAR, Huang F, Embaye KS, Wang X, Zhu F. The implication of STEP in synaptic plasticity and cognitive impairments in Alzheimer’s disease and other neurological disorders. Front. Cell Dev. Biol., 9, (2021). https://doi.org/10.1007/s13311-023-01356-6

Jamjoom AAB, Rhodes J, Andrews PJD, Grant SGN. The synapse in traumatic brain injury. Brain, 144, 18–31 (2021). https://doi.org/10.1093/brain/awaa321

Gasmi A, Nasreen A, Menzel A, Gasmi Benahmed A, Pivina L, Noor S, Peana M, Chirumbolo S, Bjørklund G. Neurotransmitters regulation and food intake: The role of dietary sources in neurotransmission. Molecules, 28, 210 (2022). https://doi.org/10.3390/molecules28010210

Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga M-R, Wang X, Anadón A, Martínez M-A. Oxidative stress, the blood–brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm. Sin. B., 13, 3988–4024 (2023). https://doi.org/10.1016/j.apsb.2023.07.010.

Lin W-Y, Lin J-H, Kuo Y-W, Chiang P-FR, Ho H-H. Probiotics and their metabolites reduce oxidative stress in middle-aged mice. Curr. Microbiol., 79, (2022). https://doi.org/10.1007/s00284-022-02783-y

Sharma C, Kim S, Nam Y, Jung UJ, Kim SR. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int. J. Mol. Sci., 22, 4850 (2021). https://doi.org/10.3390/ijms22094850.

Merkouris E, Mavroudi T, Miliotas D, Tsiptsios D, Serdari A, Christidi F, Doskas TK, Mueller C, Tsamakis K. Probiotics’ effects in the treatment of anxiety and depression: A comprehensive review of 2014–2023 clinical trials. Microorganisms, 12, 411 (2024). https://doi.org/10.3390/microorganisms12020411.

Ranjha MMAN, Shafique B, Batool M, Kowalczewski PŁ, Shehzad Q, Usman M, Manzoor MF, Zahra SM, Yaqub S, Aadil RM. Nutritional and health potential of probiotics: A review. Appl. Sci. (Basel), 11, 11204 (2021). https://doi.org/10.3390/app112311204

Yang T, Nie Z, Shu H, Kuang Y, Chen X, Cheng J, Yu S, Liu H. The role of BDNF on neural plasticity in depression. Front. Cell. Neurosci., 14, (2020). https://doi.org/10.3389/fncel.2020.00082

Ferrari S, Galla R, Mulè S, Rosso G, Brovero A, Macchi V, Ruga S, Uberti F. The role of Bifidobacterium bifidum novaBBF7, Bifidobacterium longum novaBLG2 and Lactobacillus paracasei TJB8 to improve mechanisms linked to neuronal cells protection against oxidative condition in a gut-brain axis model. Int. J. Mol. Sci., 24, 12281 (2023). https://doi.org/10.3390/ijms241512281.

Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha‐synuclein, conspire to cause neurodegeneration. Mov. Disord., 34, 167–79 (2019). https://doi.org/10.1002/mds.27607

Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol., 23, 38–54 (2023). https://doi.org/10.1038/s41577-022-00746-9.

Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut Microbiota in gut-brain communication. Front. Endocrinol. (Lausanne), 11, 25 (2020). https://doi.org/10.3389/fendo.2020.00025

Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients, 12, 1107 (2020). https://doi.org/10.3390/nu12041107.

Martel J, Chang S-H, Ko Y-F, Hwang T-L, Young JD, Ojcius DM. Gut barrier disruption and chronic disease. Trends Endocrinol. Metab., 33, 247–65 (2022). https://doi.org/10.1016/j.tem.2022.01.002.

Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, Milovanovic M, Arsenijevic N. Interleukin-17 in chronic inflammatory neurological diseases. Front. Immunol., 11, (2020). https://doi.org/10.3389/fimmu.2020.00947

Akhtar M, Chen Y, Ma Z, Zhang X, Shi D, Khan JA, Liu H. Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. Anim. Nutr., 8, 350–60 (2022). https://doi.org/10.1016/j.aninu.2021.11.005.

Chandrasekaran P, Weiskirchen S, Weiskirchen R. Effects of probiotics on gut Microbiota: An overview. Int. J. Mol. Sci., 25, 6022 (2024). https://doi.org/10.3390/ijms25116022.

Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct. Target. Ther., 7, (2022). https://doi.org/10.1038/s41392-022-01073-0.

Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front. Endocrinol. (Lausanne), 14, (2023). https://doi.org/10.3389/fendo.2023.1149239.

Kasprzak A. Insulin-like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. Int. J. Mol. Sci., 22, 6434 (2021). https://doi.org/10.3389/fendo.2023.1149239.

Guo W, Liu K, Wang Y, Ge X, Ma Y, Qin J, Zhang C, Zhao Y, Shi C. Neurotrophins and neural stem cells in posttraumatic brain injury repair. Animal Model. Exp. Med., 7, 12–23 (2024). https://doi.org/10.1002/ame2.12363.

Hsu Y-C, Huang Y-Y, Tsai S-Y, Kuo Y-W, Lin J-H, Ho H-H, Chen J-F, Hsia K-C, Sun Y. Efficacy of probiotic supplements on brain-derived neurotrophic factor, inflammatory biomarkers, oxidative stress and cognitive function in patients with Alzheimer’s dementia: A 12-week randomized, double-blind active-controlled study. Nutrients, 16, 16 (2023). https://doi.org/10.3390/nu16010016

Qian X-H, Xie R-Y, Liu X-L, Chen S-D, Tang H-D. Mechanisms of short-chain fatty acids derived from gut Microbiota in Alzheimer’s disease. Aging Dis., 13, 1252 (2022). https://doi.org/10.14336/AD.2021.1215.

Wauters L, Van Oudenhove L, Accarie A, Geboers K, Geysen H, Toth J, Luypaerts A, Verbeke K, Smokvina T, Raes J, Tack J, Vanuytsel T. Lactobacillus rhamnosus CNCM I-3690 decreases subjective academic stress in healthy adults: a randomized placebo-controlled trial. Gut Microbes, 14, (2022). https://doi.org/10.1080/19490976.2022.2031695.

Wu Y, Wang Y, Hu A, Shu X, Huang W, Liu J, Wang B, Zhang R, Yue M, Yang C. Lactobacillus plantarum-derived postbiotics prevent Salmonella-induced neurological dysfunctions by modulating gut–brain axis in mice. Front. Nutr., 9, (2022). https://doi.org/10.1080/19490976.2022.2031695.

Jang HJ, Lee N-K, Paik H-D. A narrative review on the advance of probiotics to metabiotics. J. Microbiol. Biotechnol., 34, 487–94 (2024). https://doi.org/10.4014/jmb.2311.11023.

Oroojzadeh P, Bostanabad SY, Lotfi H. Psychobiotics: The influence of gut Microbiota on the gut-brain axis in neurological disorders. J. Mol. Neurosci., 72, 1952–64 (2022). https://doi.org/10.1007/s12031-022-02053-3.

Liu J, Gao Z, Liu C, Liu T, Gao J, Cai Y, Fan X. Alteration of gut Microbiota: New strategy for treating autism spectrum disorder. Front. Cell Dev. Biol., 10, (2022). https://doi.org//10.3389/fcell.2022.792490

Un-Nisa A, Khan A, Zakria M, Siraj S, Ullah S, Tipu MK, Ikram M, Kim MO. Updates on the role of probiotics against different health issues: Focus on Lactobacillus. Int. J. Mol. Sci., 24, 142 (2022). https://doi.org//10.3390/ijms24010142.

Thoda C, Touraki M. Probiotic-derived bioactive compounds in colorectal cancer treatment. Microorganisms, 11, 1898 (2023). https://doi.org/10.3390/microorganisms11081898.

Tripathy A, Dash J, Kancharla S, Kolli P, Mahajan D, Senapati S, Jena MK. Probiotics: A promising candidate for management of colorectal cancer. Cancers (Basel), 13, 3178 (2021). https://doi.org/10.3390/cancers13133178

Bourebaba Y, Marycz K, Mularczyk M, Bourebaba L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed. Pharmacother., 153, 113138 (2022). https://doi.org/10.1016/j.biopha.2022.113138.

Abdelhamid M, Zhou C, Ohno K, Kuhara T, Taslima F, Abdullah M, Jung C-G, Michikawa M. Erratum to: Probiotic Bifidobacterium breve prevents memory impairment through the reduction of both amyloid- production and microglia activation in APP knock-in mouse. J. Alzheimers. Dis., 92, 725–725 (2023). https://doi.org/10.3233/JAD-229022

Ullah H, Arbab S, Tian Y, Liu C-Q, Chen Y, Qijie L, Khan MIU, Hassan IU, Li K. The gut microbiota-brain axis in neurological disorder. Front. Neurosci., 17, 1225875 (2023). https://10.3389/fnins.2023.1225875

Naomi R, Embong H, Othman F, Ghazi HF, Maruthey N, Bahari H. Probiotics for Alzheimer’s disease: A systematic review. Nutrients, 14, 20 (2021). https://doi.org/10.3389/fnins.2023.1225875

Lu C-S, Chang H-C, Weng Y-H, Chen C-C, Kuo Y-S, Tsai Y-C. The add-on effect of Lactobacillus plantarum PS128 in patients with Parkinson’s disease: A pilot study. Front. Nutr., 8, (2021). https://doi.org/10.3389/fnins.2023.1225875

Jach ME, Serefko A, Szopa A, Sajnaga E, Golczyk H, Santos LS, Borowicz-Reutt K, Sieniawska E. The role of probiotics and their metabolites in the treatment of depression. Molecules, 28, (2023). https://doi.org/10.3390/molecules28073213.

Abdellatif B, McVeigh C, Bendriss G, Chaari A. The promising role of probiotics in managing the altered gut in autism spectrum disorders. Int. J. Mol. Sci., 21, 4159 (2020). https://doi.org/10.3390/ijms21114159.

Bermúdez-Humarán LG, Salinas E, Ortiz GG, Ramirez-Jirano LJ, Morales JA, Bitzer-Quintero OK. From probiotics to psychobiotics: Live beneficial bacteria which act on the brain-gut axis. Nutrients, 11, 890 (2019). https://doi.org/10.3390/nu11040890.

Liu X-F, Shao J-H, Liao Y-T, Wang L-N, Jia Y, Dong P-J, Liu Z-Z, He D-D, Li C, Zhang X. Regulation of short-chain fatty acids in the immune system. Front. Immunol., 14, (2023). https://doi.org/10.3389/fimmu.2023.1186892.

D’Aquila P, Lynn Carelli L, De Rango F, Passarino G, Bellizzi D. Gut Microbiota as important mediator between diet and DNA methylation and histone modifications in the host. Nutrients, 12, 597 (2020). https://doi.org/10.3390/nu12030597.

Lu Q, Guo Y, Yang G, Cui L, Wu Z, Zeng X, Pan D, Cai Z. Structure and anti-inflammation potential of lipoteichoic acids isolated from Lactobacillus strains. Foods, 11, 1610 (2022). https://doi.org/10.3390/foods11111610.

Li D-D, Zhang Y-H, Zhang W, Zhao P. Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease. Front. Neurosci., 13, (2019). https://doi.org/10.3389/fnins.2019.00472.

Sharma G, Sharma A, Kim I, Cha DG, Kim S, Park ES, Noh JG, Lee J, Ku JH, Choi YH, Kong J, Lee H, Ko H, Lee J, Notaro A, Hong SH, Rhee JH, Kim SG, De Castro C, Molinaro A, Shin K, Kim S, Kim JK, Rudra D, Im S-H. A dietary commensal microbe enhances antitumor immunity by activating tumor macrophages to sequester iron. Nat. Immunol., 25, 790–801 (2024). https://doi.org/10.1038/s41590-024-01816-x

Bianchetti G, De Maio F, Abeltino A, Serantoni C, Riente A, Santarelli G, Sanguinetti M, Delogu G, Martinoli R, Barbaresi S, Spirito MD, Maulucci G. Unraveling the gut microbiome-diet connection: Exploring the impact of digital precision and personalized nutrition on Microbiota composition and host physiology. Nutrients, 15, (2023). https://doi.org//10.3390/nu15183931.

Published

2024-10-31

How to Cite

J Renukadevi, R Velmurugan, G Nandhinidevi, V S Karthikha, & V Sri Vaishnavi. (2024). Exploring the neuroprotective role of probiotics in the therapeutic interventions of cognitive decline. Journal of Applied Pharmaceutical Research, 12(5), 1-15. https://doi.org/10.69857/joapr.v12i5.648

Issue

Section

Articles