Insights of nose to brain delivery in treating Parkinson’s disease: A systematic review

Authors

  • Renukuntla Pranay Department of Pharmaceutics, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Medchal-Malkajgiri, Hyderabad 500 088, Telangana, India
  • Ravi Kumar Tatikayala Department of Pharmaceutics, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Medchal-Malkajgiri, Hyderabad 500 088, Telangana, India
  • Sujatha Damera Department of Pharmacognosy, University College of Pharmaceutical Sciences, Kakatiya University, Hanamakonda, Warangal- 506009, Telangana, India
  • Naveen Pathakala Department of Pharmacology, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Medchal-Malkajgiri, Hyderabad-500 088, Telangana, India
  • Rajendra Kumar Jadi Department of Pharmaceutics, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Medchal-Malkajgiri, Hyderabad 500 088, Telangana, India

DOI:

https://doi.org/10.69857/joapr.v12i6.625

Keywords:

Parkinson’s disease, nose-to-brain, nanoparticles, liposomes, cell-based carriers, dendrimers

Abstract

Background: In Parkinson's disease (PD), a complicated neurodegenerative ailment, neurons in the substantia nigra that produce dopamine are lost, resulting in an insufficiency of the neurotransmitter that is essential for the regulation of voluntary and smooth muscular movements. This review focuses on the obstacle triggering the effectiveness of traditional PD treatments, which is the blood-brain barrier (BBB), which prevents some therapeutic medicines from reaching the brain. It encompasses the potential strategy of nose-to-brain administration by innovative approaches, including nanoparticles, liposomes, dendrimers, and cell-based carriers, directly delivering the drugs from nose to brain. Methods: The methodology involved examining the characteristics, advantages, applications, and challenges of various nanoparticles like SLNs, Nanoliposomes, Quantum dots, dendrimers, etc., through meticulous analysis of articles including from PubMed (5), ScienceDirect (5), Bentham Science (4) and Scopus databases (5). Conclusion: The review concludes by emphasizing the potential applications of nanoparticles in circumventing the problems encountered with traditional methods of drug administration in treating PD. This detailed study brings to light the applications and the challenges that need to be faced in utilizing nanoparticles for nose-to-brain delivery. Attention is directed towards the enlightenment of advanced carriers that target specific brain regions via the olfactory and trigeminal routes. The drug directly reaches the brain, bypassing BBB.

Downloads

Download data is not yet available.

References

Balestrino R, Schapira AH. Parkinson disease. European journal of neurology. 27(1), 27-42(2020) https://doi.org/10.1111/ene.14108.

Kumar S, Goyal L, Singh S. Tremor and rigidity in patients with Parkinson’s disease: Emphasis on epidemiology, pathophysiology and contributing factors. CNS & neurological disorders-drug targets (formerly current drug targets-CNS & neurological disorders). 21(7), 596-609 (2022) https://doi.org/10.2174/1871527320666211006142100.

Niermeyer MA, Suchy Y. Walking, talking, and suppressing: Executive functioning mediates the relationship between higher expressive suppression and slower dual-task walking among older adults. The clinical neuropsychologist. 34(4), 775-96 (2020) https://doi.org/10.1080/13854046.2019.1704436.

Utianski RL, Duffy JR. Understanding, recognizing, and managing functional speech disorders: Current thinking illustrated with a case series. American journal of speech-language pathology, 31(3), 1205-20 (2022) https://doi.org/10.1044/2021_AJSLP-21-00366.

Brett BL, Gardner RC, Godbout J, Dams-O’Connor K, Keene CD. Traumatic brain injury and risk of neurodegenerative disorder. Biological psychiatry, 91(5), 498-507 (2022) https://doi.org/10.1016/j.biopsych.2021.05.025.

La Barbera L, Vedele F, Nobili A, Krashia P, Spoleti E, Latagliata EC, Cutuli D, Cauzzi E, Marino R, Viscomi MT, Petrosini L. Nilotinib restores memory function by preventing dopaminergic neuron degeneration in a mouse model of Alzheimer’s Disease. Progress in neurobiology, 202, 102031 (2021) https://doi.org/10.1016/j.pneurobio.2021.102031.

Angelova PR, Choi ML, Berezhnov AV, Horrocks MH, Hughes CD, De S, Rodrigues M, Yapom R, Little D, Dolt KS, Kunath T. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell death & differentiation, 27(10), 2781-96. (2020) https://doi.org/10.1038/s41418-020-0542-z.

Choi EH, Kim MH, Park SJ. Targeting mitochondrial dysfunction and reactive oxygen species for neurodegenerative disease treatment. International journal of molecular sciences. 25(14), 7952 (2024) https://doi.org/10.3390/ijms25147952.

Pleuger C, Silva EJ, Pilatz A, Bhushan S, Meinhardt A. Differential immune response to infection and acute inflammation along the epididymis. Frontiers in immunology, 11, 599594 (2020) https://doi.org/10.3389/fimmu.2020.599594.

Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal transduction and targeted therapy, 9(1), 124 (2024) https://doi.org/10.1038/s41392-024-01839-8.

Joutsa J, Moussawi K, Siddiqi SH, Abdolahi A, Drew W, Cohen AL, Ross TJ, Deshpande HU, Wang HZ, Bruss J, Stein EA. Brain lesions disrupting addiction map to a common human brain circuit. Nature medicine, 28(6), 1249-55 (2022) https://doi.org/10.1038/s41591-022-01834-y.

Church FC. Treatment options for motor and non-motor symptoms of Parkinson’s disease. Biomolecules, 11(4), 612 (2021) https://doi.org/10.3390/biom11040612.

Tsai PH, Lai WY, Lin YY, Luo YH, Lin YT, Chen HK, Chen YM, Lai YC, Kuo LC, Chen SD, Chang KJ. Clinical manifestation and disease progression in COVID-19 infection. Journal of the chinese medical association, 84(1), 3-8 (2021) https://doi.org/10.1097/jcma.0000000000000463.

Chiritoiu M, Chiritoiu GN, Munteanu CV, Pastrama F, Ivessa NE, Petrescu SM. EDEM1 drives misfolded protein degradation via ERAD and exploits ER-phagy as back-up mechanism when ERAD is impaired. International journal of molecular sciences, 21(10), 3468 (2020) https://doi.org/10.3390/ijms21103468.

Nasyrova RF, Moskaleva PV, Vaiman EE, Shnayder NA, Blatt NL, Rizvanov AA. Genetic factors of nitric oxide’s system in psychoneurologic disorders. International journal of molecular sciences, 21(5), 1604 (2020) https://doi.org/10.3390/ijms21051604.

Azizi SA. Monoamines: dopamine, norepinephrine, and serotonin, beyond modulation,“switches” that alter the state of target networks. The neuroscientist, (2), 121-43 (2022) https://doi.org/10.1177/1073858420974336.

Safarpour Y, Vaziri ND, Jabbari B. Movement disorders in chronic kidney disease–a descriptive review. Journal of stroke and cerebrovascular diseases, 30(9), 105408 (2021) https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105408.

Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson’s disease with the alpha-synuclein protein. Frontiers in pharmacology, 11, 356 (2020) https://doi.org/10.3389/fphar.2020.06.

Kumari S, Taliyan R, Dubey SK. Comprehensive review on potential signaling pathways involving the transfer of α-synuclein from the gut to the brain that leads to Parkinson’s disease. ACS chemical neuroscience, 14(4), 590-602 (2023) https://doi.org/10.1021/acschemneuro.

Lenzi P, Lazzeri G, Ferrucci M, Scotto M, Frati A, Puglisi-Allegra S, Busceti CL, Fornai F. Is there a place for Lewy bodies before and beyond alpha-synuclein accumulation? Provocative issues in need of solid explanations. International journal of molecular sciences, 25(7), 3929 (2024) https://doi.org/10.3390/ijms256.

Mavroeidi P, Xilouri M. Neurons and glia interplay in α-synucleinopathies. International journal of molecular sciences, 22(9), 4994 (2021) https://doi.org/10.3390/ijms22094994.

Kon T, Tomiyama M, Wakabayashi K. Neuropathology of Lewy body disease: Clinicopathological crosstalk between typical and atypical cases. Neuropathology, 40(1), 30-9 (2020) https://doi.org/10.1111/neup.12597.

Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. Journal of Neurology, Neurosurgery & psychiatry, 91(8), 795-808 (2020) https://doi.org/10.1136/jnnp-2019-322338.

Shin KJ, Park J, Ha S, Park KM, Kim SE, Lee BI, Lee DA, Kim HT, Yoon JY. Decreased foot height may be a subclinical shuffling gait in early stage of Parkinson’s disease: A study of three-dimensional motion analysis. Gait & posture. 76, 64-7(2020) https://doi.org/10.1016/j.gaitpost.2019.11.005.

Siragy T, Mezher C, Hill A, Nantel J. Active arm swing and asymmetric walking leads to increased variability in trunk kinematics in young adults. Journal of biomechanics, 99, 109529 (2020) https://doi.org/10.1016/j.jbiomech.2019.109529.

Lord SR, Bindels H, Ketheeswaran M, Brodie MA, Lawrence AD, Close JC, Whone AL, Ben-Shlomo Y, Henderson EJ. Freezing of gait in people with Parkinson’s disease: nature, occurrence, and risk factors. Journal of parkinson's disease, 10(2), 631-40 (2020) https://doi.org/10.3233/jpd-191813.

Truong D, Shaikh A, Hallett M. Tremors. Journal of the neurological sciences, 435, 120189 (2022) https://doi.org/10.1016/j.jns.2022.120190.

Bologna M, Espay AJ, Fasano A, Paparella G, Hallett M, Berardelli A. Redefining bradykinesia. Movement disorders: Official journal of the movement disorder society, 38(4), 551 (2023) https://doi.org/10.1002/mds.29362.

Ferreira-Sánchez MD, Moreno-Verdú M, Cano-de-La-Cuerda R. Quantitative measurement of rigidity in Parkinson’s disease: a systematic review. Sensors, 20(3), 880 (2020) https://doi.org/10.3390/s20030880.

Viseux FJ, Delval A, Defebvre L, Simoneau M. Postural instability in Parkinson’s disease: Review and bottom-up rehabilitative approaches. Neurophysiologie clinique, 50(6), 479-87 (2020) https://doi.org/10.1016/j.neucli.2020.10.013.

Cupertino L, Dos Reis TG, Costa TM, Shokur S, Bouri M, de Lima-Pardini AC, Coelho DB. Biomechanical aspects that precede freezing episode during gait in individuals with Parkinson's disease: A systematic review. Gait & posture, 91, 149-54 (2022) https://doi.org/10.1016/j.gaitpost.2021.10.021.

Meganathan NT, Krishnan S. Micrographia-based parkinson’s disease detection using Deep Learning. Romanian journal of information technology and automatic control, 33(3), 85-98 (2023) https://doi.org/10.33436/v33i3y202307.

Rowe HP, Gutz SE, Maffei MF, Tomanek K, Green JR. Characterizing dysarthria diversity for automatic speech recognition: A tutorial from the clinical perspective. Frontiers in computer science, 4, 770210 (2022) https://doi.org/10.3389/fcomp.2022.770210.

Thiyagalingam S, Kulinski AE, Thorsteinsdottir B, Shindelar KL, Takahashi PY. Dysphagia in older adults. In Mayo clinic proceedings, Elsevier, 96(2), 488-97 (2021) https://doi.org/10.1016/j.mayocp.2020.08.001.

Acero de Mesa N, Ortega T, Sebastián V, León Bello G, Muñoz Mingarro D, Castillo García E, González Rosende ME, Borrás S, Ríos JL, Bosch Morell F, Martínez Solís I. Phytotherapeutic alternatives for neurodegenerative dementias: scientific review, discussion, and therapeutic proposal. Phytotherapy research, 37, 3 (2022) https://doi.org/10.1002/ptr.7727.

Yi LX, Tan EK, Zhou ZD. Tyrosine Hydroxylase Inhibitors and Dopamine Receptor Agonists Combination Therapy for Parkinson’s disease. International journal of molecular sciences. 25(9), 4643 (2024) https://doi.org/10.3390/ijms25094643.

Muleiro Alvarez M, Cano-Herrera G, Osorio Martínez MF, Vega Gonzales-Portillo J, Monroy GR, Murguiondo Pérez R, Torres-Ríos JA, van Tienhoven XA, Garibaldi Bernot EM, Esparza Salazar F, Ibarra A. A comprehensive approach to Parkinson’s disease: addressing its molecular, clinical, and therapeutic aspects. International journal of molecular sciences, 25(13), 7183 (2024) https://doi.org/10.3390/ijms25137183.

Kikuchi T. Is memantine effective as an NMDA receptor antagonist in adjunctive therapy for schizophrenia? Biomolecules, 10(8), 1134 (2020) https://doi.org/10.3390/biom10081134.

Bhidayasiri R, Phuenpathom W, Tan AH, Leta V, Phumphid S, Chaudhuri KR, Pal PK. Management of dysphagia and gastroparesis in Parkinson’s disease in real-world clinical practice–Balancing pharmacological and non-pharmacological approaches. Frontiers in aging neuroscience, 14, 979826 (2022) https://doi.org/10.3389/fnagi.2022.979826.

Müller T. Pharmacokinetics and pharmacodynamics of levodopa/carbidopa cotherapies for Parkinson’s disease. Expert opinion on drug metabolism & toxicology, 16(5), 403-14 (2020) https://doi.org/10.1080/17425255.2020.1750596.

Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules, 26(19), 5905 (2021) https://doi.org/10.3390/molecules26195905.

Paul A, Yadav KS. Parkinson's disease: Current drug therapy and unraveling the prospects of nanoparticles. Journal of drug delivery science and technology, 58, 101790 (2020) https://doi.org/10.1016/j.jddst.2020.101790.

Mahanur V, Rajge R, Tawar M. A review on emerging oral dosage forms which helps to bypass the hepatic first pass metabolism. Asian journal of pharmacy and technology, 12(1), 47-52 (2022) http://dx.doi.org/10.52711/2231-5713.2022.00009.

Dalvi M, Kharat P, Thakor P, Bhavana V, Singh SB, Mehra NK. Panorama of dissolving microneedles for transdermal drug delivery. Life sciences, 284, 119877 (2021) https://doi.org/10.1016/j.lfs.2021.119877.

Yee KM, Mohamad N, Kee PE, Chew YL, Lee SK, Lakshminarayanan V, Tan CS, Liew KB. Recent Advances in Orally Disintegrating Tablet: Properties, Formulation and Production. Drug delivery letters. 14(3), 211-25 (2024) https://doi.org/10.2174/0122103031291909240317162755.

Cao Z, Tang X, Zhang Y, Yin T, Gou J, Wang Y, He H. Novel injectable progesterone-loaded nanoparticles embedded in SAIB-PLGA in situ depot system for sustained drug release. International journal of pharmaceutics, 607, 121021 (2021) https://doi.org/10.1016/j.ijpharm.2021.121021.

Aggarwal N, Qamar Z, Rehman S, Baboota S, Ali J. Orally administered nanotherapeutics for parkinson’s disease: an old delivery system yet more acceptable. Current pharmaceutical design, 26(19), 2280-90 (2020) https://doi.org/10.2174/1381612826666200406072451.

Brayden DJ, Hill TA, Fairlie DP, Maher S, Mrsny RJ. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Advanced drug delivery reviews, 157, 2-36 (2020) https://doi.org/10.1016/j.addr.2020.05.007.

Laffleur F, Bauer B. Progress in nasal drug delivery systems. International journal of pharmaceutics, 607, 120994 (2021) https://doi.org/10.1016/j.ijpharm.2021.120994.

Mahanur V, Rajge R, Tawar M. A review on emerging oral dosage forms which helps to bypass the hepatic first pass metabolism. Asian journal of pharmacy and technology, 12(1), 47-52 (2022) http://dx.doi.org/10.52711/2231-5713.2022.00009.

Iqbal I, Saqib F, Mubarak Z, Latif MF, Wahid M, Nasir B, Shahzad H, Sharifi-Rad J, Mubarak MS. Alzheimer’s disease and drug delivery across the blood–brain barrier: approaches and challenges. European journal of medical research, 29(1), 313 (2024) https://doi.org/10.1186/s40001-024-01915-3.

Scherließ R. Nasal formulations for drug administration and characterization of nasal preparations in drug delivery. Therapeutic delivery, 11(3), 183-91 (2020) https://doi.org/10.4155/tde-2019-0086.

Mori K, Sakano H. Olfactory circuitry, and behavioral decisions. Annual review of physiology, 83(1), 231-56 (2021) https://doi.org/10.1146/annurev-physiol-031820-092824.

Marcello E, Chiono V. Biomaterials-enhanced intranasal delivery of drugs as a direct route for brain targeting. International journal of molecular sciences, 24(4), 3390 (2023) https://doi.org/10.3390/ijms24043390.

Krausgruber T, Fortelny N, Fife-Gernedl V, Senekowitsch M, Schuster LC, Lercher A, Nemc A, Schmidl C, Rendeiro AF, Bergthaler A, Bock C. Structural cells are key regulators of organ-specific immune responses. Nature, 583 (7815), 296-302 (2020) https://doi.org/10.1038/s41586-020-2424-4.

Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, prebiotics and epithelial tight junctions: a promising approach to modulate intestinal barrier function. International journal of molecular sciences, 22(13), 6729 (2021) https://doi.org/10.3390/ijms22136729.

Thakur A, Singh PK, Biswal SS, Kumar N, Jha CB, Singh G, Kaur C, Wadhwa S, Kumar R. Drug delivery through nose: A noninvasive technique for brain targeting. Journal of reports in pharmaceutical sciences, 9(1), 168-75 (2020) http://dx.doi.org/10.4103/jrptps.JRPTPS_59_19.

Taliyan R, Kakoty V, Sarathlal KC, Kharavtekar SS, Karennanavar CR, Choudhary YK, Singhvi G, Riadi Y, Dubey SK, Kesharwani P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease. Journal of controlled release, 343, 528-50 (2022) https://doi.org/10.1016/j.jconrel.2022.01.044.

Ruan S, Zhou Y, Jiang X, Gao H. Rethinking CRITID procedure of brain targeting drug delivery: circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Advanced science, 8(9), 2004025 (2021) https://doi.org/10.1002/advs.202004025.

Thakur A, Singh PK, Biswal SS, Kumar N, Jha CB, Singh G, Kaur C, Wadhwa S, Kumar R. Drug delivery through nose: A noninvasive technique for brain targeting. Journal of reports in pharmaceutical sciences, 9(1), 168-75 (2020) http://dx.doi.org/10.4103/jrptps.JRPTPS_59_19.

Lee D, Minko T. Nanotherapeutics for nose-to-brain drug delivery: an approach to bypass the blood brain barrier. Pharmaceutics, 13(12), 2049 (2021) https://doi.org/10.3390/pharmaceutics13122049.

Huang Q, Chen Y, Zhang W, Xia X, Li H, Qin M, Gao H. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. Journal of controlled release, 366, 519-34 (2024) https://doi.org/10.1016/j.jconrel.2023.12.054 .

Chen Y, Zhang C, Huang Y, Ma Y, Song Q, Chen H, Jiang G, Gao X. Intranasal drug delivery: the interaction between nanoparticles and the nose-to-brain pathway. Advanced drug delivery reviews, 115196 (2024) https://doi.org/10.1016/j.addr.2024.115196.

Ekbatan MR, Cairns BE. Attenuation of sensory transmission through the rat trigeminal ganglion by GABA receptor activation. Neuroscience, 471, 80-92 (2021) https://doi.org/10.1016/j.neuroscience.2021.07.018.

Terrier LM, Hadjikhani N, Velut S, Magnain C, Amelot A, Bernard F, Zöllei L, Destrieux C. The trigeminal system: the meningovascular complex—a review. Journal of anatomy, 239(1), 1-1 (2021) https://doi.org/10.1111/joa.13413.

Xu K, Duan S, Wang W, Ouyang Q, Qin F, Guo P, Hou J, He Z, Wei W, Qin M. Nose‐to‐brain delivery of nanotherapeutics: Transport mechanisms and applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 16(2), e1956 (2024) https://doi.org/10.1002/wnan.1956.

Ansari MA, Chung IM, Rajakumar G, Alzohairy MA, Alomary MN, Thiruvengadam M, Pottoo FH, Ahmad N. Current nanoparticle approaches in nose to brain drug delivery and anticancer therapy-a review. Current pharmaceutical design, 26(11), 1128-37 (2020) https://doi.org/10.2174/1381612826666200116153912.

Correia AC, Monteiro AR, Silva R, Moreira JN, Lobo JS, Silva AC. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders. Advanced drug delivery reviews, 189, 114485 (2022) https://doi.org/10.1016/j.addr.2022.114485.

Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, Dutta P, Lin Y. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Materials today, 37, 112-25 (2020) https://doi.org/10.1016/j.mattod.2020.02.001.

Naqvi S, Panghal A, Flora SJ. Nanotechnology: a promising approach for delivery of neuroprotective drugs. Frontiers in Neuroscience, 14, 494 (2020) https://doi.org/10.3389/fnins.2020.00494.

Islam SU, Shehzad A, Ahmed MB, Lee YS. Intranasal delivery of nanoformulations: a potential way of treatment for neurological disorders. Molecules, 25(8), 1929 (2020) https://doi.org/10.3390/molecules25081929.

Khatri DK, Preeti K, Tonape S, Bhattacharjee S, Patel M, Shah S, Singh PK, Srivastava S, Gugulothu D, Vora L, Singh SB. Nanotechnological advances for nose to brain delivery of therapeutics to improve the Parkinson therapy. Current neuropharmacology, 21(3), 493 (2023) https://doi.org/10.2174/1570159x20666220507022701.

Emad NA, Ahmed B, Alhalmi A, Alzobaidi N, Al-Kubati SS. Recent progress in nanocarriers for direct nose to brain drug delivery. Journal of drug delivery science and technology, 64, 102642 (2021) https://doi.org/10.1016/j.jddst.2021.102642.

Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Frontiers in molecular biosciences, 7, 587997 (2020) https://doi.org/10.3389/fmolb.2020.587997.

Mirchandani Y, Patravale VB, Brijesh S. Solid lipid nanoparticles for hydrophilic drugs. Journal of controlled release, 335, 457-64 (2021) https://doi.org/10.1016/j.jconrel.2021.05.032.

Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics, 12(3), 288 (2020) https://doi.org/10.3390/pharmaceutics12030288.

Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. Core–shell nanostructures: perspectives towards drug delivery applications. Journal of materials chemistry B, 8(39), 8992-9027 (2020) https://doi.org/10.1039/D0TB01559H.

Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R, Yang CH. Solid lipid nanoparticles (SLNs): an advanced drug delivery system targeting brain through BBB. Pharmaceutics, 13(8), 1183 (2021) https://doi.org/10.3390/pharmaceutics13081183.

Lamptey RN, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics. International journal of molecular sciences, 23(3), 1851(2022) https://doi.org/10.3390/ijms23031851.

Pandey V, Gadeval A, Asati S, Jain P, Jain N, Roy RK, Tekade M, Soni V, Tekade RK. Formulation strategies for nose-to-brain delivery of therapeutic molecules. Drug delivery systems (pp. 291-332) (2020). https://doi.org/10.1016/B978-0-12-814487-9.00007-7.

Chacko IA, Ghate VM, Dsouza L, Lewis SA. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids and Surfaces Biointerfaces, 195, 111262 (2020)https://doi.org/10.1016/j.colsurfb.2020.111262.

Male D, Gromnicova R. Nanocarriers for Delivery of Oligonucleotides to the CNS. International journal of molecular sciences, 23(2), 760 (2022) https://doi.org/10.3390/ijms23020760.

Borges A, de Freitas V, Mateus N, Fernandes I, Oliveira J. Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxidants, 9(10), 998 (2020) https://doi.org/10.3390/antiox9100998(83).

Chopade P, Jagtap S, Gosavi S. Synthesis and application of CdSe functional material. InFunctional Materials from Carbon, Inorganic, and Organic Sources, Woodhead Publishing, (pp. 393-423) (2023) https://doi.org/10.1016/B978-0-323-85788-8.00001-X.

Dhas N, Pastagia M, Sharma A, Khera A, Kudarha R, Kulkarni S, Soman S, Mutalik S, Barnwal RP, Singh G, Patel M. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics. Journal of controlled release, 348, 798-824 (2022) https://doi.org/10.1016/j.jconrel.2022.06.033.

Arti S, Bharti M, Kumar V, Rehani V, Dhiman J. Drug nanocrystals as nanocarrier-based drug delivery systems. In Industrial Applications of Nanocrystals, Elsevier, (pp. 179-203), (2022) https://doi.org/10.1016/B978-0-12-824024-3.00018-X.

Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coordination chemistry reviews, 457, 214423 (2022) https://doi.org/10.1016/j.ccr.2022.214423(87).

Chen Y, Zhang C, Huang Y, Ma Y, Song Q, Chen H, Jiang G, Gao X. Intranasal drug delivery: the interaction between nanoparticles and the nose-to-brain pathway. Advanced drug delivery reviews, 115196 (2024) https://doi.org/10.1016/j.addr.2024.115196.

Gandhi S, Shastri DH, Shah J, Nair AB, Jacob S. Nasal Delivery to the Brain: Harnessing Nanoparticles for Effective Drug Transport. Pharmaceutics, 16(4), 481 (2024) https://doi.org/10.3390/pharmaceutics16040481.

Li YX, Wei Y, Zhong R, Li L, Pang HB. Transportan peptide stimulates the nanomaterial internalization into mammalian cells in the bystander manner through macropinocytosis. Pharmaceutics, 13(4), 552 (2021) https://doi.org/10.3390/pharmaceutics13040552.

Wang D, Mukhtar A, Humayun M, Wu K, Du Z, Wang S, Zhang Y. A critical review on nanowire‐motors: design, mechanism and applications. The chemical record, 22(8), e202200016 (2022) https://doi.org/10.1002/tcr.202200016.

Evers LJ, Peeters JM, Bloem BR, Meinders MJ. Need for personalized monitoring of Parkinson’s disease: the perspectives of patients and specialized healthcare providers. Frontiers in neurology, 14, 1150634 (2023) https://doi.org/10.3389/fneur.2023.1150634.

Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in clinical trials and translations. Nano today, 35, 100972 (2020) https://doi.org/10.1016/j.nantod.2020.100972.

Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi AR, Awan NR, Yar M. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. Journal of controlled release, 330, 1152-67 (2021) https://doi.org/10.1016/j.jconrel.2020.11.021.

Mikušová V, Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. International journal of molecular sciences, 22(17), 9652 (2021) https://doi.org/10.3390/ijms22179652.

Agosti E, Zeppieri M, Antonietti S, Battaglia L, Ius T, Gagliano C, Fontanella MM, Panciani PP. Navigating the Nose-to-Brain Route: A systematic review on lipid-based nanocarriers for central nervous system disorders. Pharmaceutics, 16(3), 329 (2024) https://doi.org/10.3390/pharmaceutics16030329.

Gandhi S, Shastri DH, Shah J, Nair AB, Jacob S. Nasal delivery to the brain: harnessing nanoparticles for effective drug transport. Pharmaceutics, 16(4), 481 (2024) https://doi.org/10.3390/pharmaceutics16040481.

Pirhaghi M, Mamashli F, Moosavi-Movahedi F, Arghavani P, Amiri A, Davaeil B, Mohammad-Zaheri M, Mousavi-Jarrahi Z, Sharma D, Langel U, Otzen DE. Cell-penetrating peptides: Promising therapeutics and drug-delivery systems for neurodegenerative diseases. Molecular pharmaceutics, 21(5), 2097-117 (2024) https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.3c01167.

Patel PR, Haemmerich D. Review on electrospray nanoparticles for drug delivery: Exploring applications. Polymers for advanced technologies, 35(7), e6507 (2024) https://doi.org/10.1002/pat.6507.

Giahi MM, Yahyaee M, Haji-Nasiri S. A review of nanorobots in the field of medicine:(history, applications, advantages, and disadvantages). In2024 10th International conference on artificial intelligence and robotics (QICAR) (pp. 150-156) (2024) https://doi.org/10.1109/QICAR61538.2024.10496640.

Sharma P, Hoorn D, Aitha A, Breier D, Peer D. The immunostimulatory nature of mRNA lipid nanoparticles. Advanced drug delivery reviews, 115175 (2024) https://doi.org/10.1016/j.addr.2023.115175.

So YJ, Lee JU, Yang GS, Yang G, Kim SW, Lee JH, Kim JU. The potentiality of natural products and herbal medicine as novel medications for parkinson’s disease: a promising therapeutic approach. International journal of molecular sciences, 25(2), (2024) https://doi.org/10.3390/ijms25021071.

Gadalla HH, Yuan Z, Chen Z, Alsuwayyid F, Das S, Mitra H, Ardekani AM, Wagner R, Yeo Y. Effects of nanoparticle deformability on multiscale biotransport. Advanced drug delivery reviews, 115445 (2024) https://doi.org/10.1016/j.addr.2024.115445.

Jhamb S, Singla R, Kaur A, Sharma J, Bhushan J. In vitro comparison to study the antimicrobial effect of silver nanoparticles gel and its various combinants as an intracanal medicament against Enterococcus faecalis. Journal of conservative dentistry and endodontics. 27(1), 42-5 (2024) https://doi.org/10.4103/jcde.jcde_180_23.

Published

2024-12-31

How to Cite

Pranay, R., Tatikayala, R. K. ., Damera, S. ., Pathakala, N. ., & Jadi, R. K. (2024). Insights of nose to brain delivery in treating Parkinson’s disease: A systematic review. Journal of Applied Pharmaceutical Research, 12(6), 57-72. https://doi.org/10.69857/joapr.v12i6.625

Issue

Section

Articles