Comprehensive review of breast cancer risk factors, diagnosis, screening, and treatment methods

Authors

  • Nurjamal Hoque Faculty of Pharmaceutical Science Assam down town university, Sankar Madhab Path, Gandhinagar, Panikhaiti, Guwahati, Assam 781026, India https://orcid.org/0009-0000-4609-9198
  • Ananta Choudhury Faculty of Pharmaceutical Science Assam down town university, Sankar Madhab Path, Gandhinagar, Panikhaiti, Guwahati, Assam 781026, India
  • Dhiraj Baishya Faculty of Pharmaceutical Science Assam down town university, Sankar Madhab Path, Gandhinagar, Panikhaiti, Guwahati, Assam 781026, India
  • Himangshu Deka Faculty of Pharmaceutical Science Assam down town university, Sankar Madhab Path, Gandhinagar, Panikhaiti, Guwahati, Assam 781026, India https://orcid.org/0000-0003-2344-7019

DOI:

https://doi.org/10.69857/joapr.v12i5.606

Keywords:

Breast Cancer Treatment, Diagnosis, Stage Patients, Receptors, Endocrine therapy, Targeted Therapy

Abstract

Background: Breast cancer is one of the leading causes of cancer-related deaths among women, accounting for 11.7% of all cancer cases and approximately 685,000 deaths worldwide in 2020. Its multifactorial etiology includes genetic, hormonal, and lifestyle-related risk factors with significant implications for diagnosis and treatment. Understanding these factors and the latest advancements in screening and therapeutic approaches is essential for improving patient outcomes. Methodology: This review synthesizes findings from peer-reviewed articles, clinical trials, and meta-analyses. The focus is on identifying key risk factors for breast cancer, evaluating the effectiveness of current diagnostic methods, and examining the latest treatment strategies, including personalized medicine. Data were collected from PubMed, Scopus, and Google Scholar databases. Results and Discussion: The review highlights major risk factors, including BRCA1/BRCA2 mutations, which contribute to a 45-65% lifetime risk, as well as hormonal influences and lifestyle factors like obesity and alcohol consumption. Targeted therapies, such as HER2 inhibitors (e.g., trastuzumab) and hormone therapies (e.g., tamoxifen), have significantly improved survival rates. Emerging treatments like immunotherapy and PARP inhibitors are also promising for aggressive and metastatic cases. Conclusion: Breast cancer continues to pose a significant health challenge, but advancements in risk assessment, early detection, and personalized treatment offer hope for better outcomes. Continued research and refining diagnostic and therapeutic approaches are essential for reducing breast cancer mortality and enhancing patient quality of life.  

Downloads

Download data is not yet available.

References

Sartaj A, Qamar Z, Qizilbash FF, Annu, Md S, Alhakamy NA, Baboota S, Ali J. Polymeric Nanoparticles: Exploring the Current Drug Development and Therapeutic Insight of Breast Cancer Treatment and Recommendations. Polymers (Basel)., 13, (2021) https://doi.org/10.3390/polym13244400

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA. Cancer J. Clin., 65, 87–108 (2015) https://doi.org/10.3322/caac.21262

Gómez-Raposo C, Zambrana Tévar F, Sereno Moyano M, López Gómez M, Casado E. Male breast cancer. Cancer Treat. Rev., 36, 451–7 (2010) https://doi.org/10.1016/j.ctrv.2010.02.002

Giordano SH, Buzdar AU, Hortobagyi GN. Breast cancer in men. Ann. Intern. Med., 137, 678–87 (2002) https://doi.org/10.7326/0003-4819-137-8-200210150-00013

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. cancer, 136, E359-86 (2015) https://doi.org/10.1002/ijc.29210

Akram M, Siddiqui S. Breast cancer management: Past, present and evolving. Indian J. Cancer, 49, 277 (2012) https://doi.org/10.4103/0019-509X.104486

Papavramidou N, Papavramidis T, Demetriou T. Ancient Greek and Greco-Roman methods in modern surgical treatment of cancer. Ann. Surg. Oncol., 17, 665–7 (2010) https://doi.org/10.1245/s10434-009-0886-6

GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England), 392, 1736–88 (2018) https://doi.org/10.1016/S0140-6736(18)32203-7

Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, , Zhang K, Zhou M, Zodpey S, Zuhlke LJ, Naghavi M, Murray CJL. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392, 1736–88 (2018) https://doi.org/10.7326/0003-4819-137-8-200210150-00013

Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 149, 778–89 (2021) https://doi.org/10.1002/ijc.29210

Sharma R. Global, regional, national burden of breast cancer in 185 countries: evidence from GLOBOCAN 2018. Breast Cancer Res. Treat., 187, 557–67 (2021) https://doi.org/10.1007/s10549-020-06083-6

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin., 71, 209–49 (2021) https://doi.org/10.3322/caac.21660

Sankaranarayanan R, Swaminathan R, Brenner H, Chen K, Chia KS, Chen JG, Law SC, Ahn Y-O, Xiang YB, Yeole BB, Shin HR, Shanta V, Woo ZH, Martin N, Sumitsawan Y, Sriplung H, Barboza AO, Eser S, Nene BM, Suwanrungruang K, Jayalekshmi P, Dikshit R, Wabinga H, Esteban DB, Laudico A, Bhurgri Y, Bah E, Al-Hamdan N. Cancer survival in Africa, Asia, and Central America: a population-based study. Lancet Oncol., 11, 165–73 (2010) https://doi.org/10.1016/S1470-2045(09)70335-3

Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P. Cancer incidence estimates for 2022 & projection for 2025: Result from National Cancer Registry Programme, India. Indian J. Med. Res., 156, 598 (2022) https://doi.org/10.4103/ijmr.ijmr_1821_22

Logan GJ, Dabbs DJ, Lucas PC, Jankowitz RC, Brown DD, Clark BZ, Oesterreich S, McAuliffe PF. Molecular drivers of lobular carcinoma in situ. Breast Cancer Res., 17, 76 (2015) https://doi.org/10.1186/s13058-015-0580-5

Wellings SR. A hypothesis of the origin of human breast cancer from the terminal ductal lobular unit. Pathol. Res. Pract., 166, 515–35 (1980) https://doi.org/10.1016/S0344-0338(80)80248-2

Reed AEM, Kutasovic JR, Lakhani SR, Simpson PT. Invasive lobular carcinoma of the breast: morphology, biomarkers and ’omics. Breast Cancer Res., 17, 12 (2015) https://doi.org/10.1186/s13058-015-0519-x

Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers (Basel)., 13, 4287 (2021) https://doi.org/10.3390/cancers13174287

Nounou MI, ElAmrawy F, Ahmed N, Abdelraouf K, Goda S, Syed-Sha-Qhattal H. Breast Cancer: Conventional Diagnosis and Treatment Modalities and Recent Patents and Technologies. Breast Cancer Basic Clin. Res., 9s2, BCBCR.S29420 (2015) https://doi.org/10.4137/BCBCR.S29420

Inic Z, Zegarac M, Inic M, Markovic I, Kozomara Z, Djurisic I, Inic I, Pupic G, Jancic S. Difference between Luminal A and Luminal B Subtypes According to Ki-67, Tumor Size, and Progesterone Receptor Negativity Providing Prognostic Information. Clin. Med. Insights Oncol., 8, CMO.S18006 (2014) https://doi.org/10.4137/CMO.S18006

Moo T-A, Sanford R, Dang C, Morrow M. Overview of Breast Cancer Therapy. PET Clin., 13, 339–54 (2018) https://doi.org/10.1016/j.cpet.2018.02.006

Bhushan A, Gonsalves A, Menon JU. Current State of Breast Cancer Diagnosis, Treatment, and Theranostics. Pharmaceutics, 13, 723 (2021) https://doi.org/10.3390/pharmaceutics13050723

Avcı H, Karakaya J. A Novel Medical Image Enhancement Algorithm for Breast Cancer Detection on Mammography Images Using Machine Learning. Diagnostics, 13, 348 (2023) https://doi.org/10.3390/diagnostics13030348

Mandelblatt JS, Cronin KA, Bailey S, Berry DA, de Koning HJ, Draisma G, Huang H, Lee SJ, Munsell M, Plevritis SK, Ravdin P, Schechter CB, Sigal B, Stoto MA, Stout NK, van Ravesteyn NT, Venier J, Zelen M, Feuer EJ, Breast Cancer Working Group of the Cancer Intervention and Surveillance Modeling Network. Effects of mammography screening under different screening schedules: model estimates of potential benefits and harms. Ann Intern Med., 151,738-47(2009) https://doi.org/10.1059/0003-4819-151-10-200911170-00010

Nelson HD. Screening for Breast Cancer: An Update for the U.S. Preventive Services Task Force. Ann. Intern. Med., 151, 727 (2009) https://doi.org/10.7326/0003-4819-151-10-200911170-00009

Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction. Radiology, 292, 60–6 (2019) https://doi.org/10.1148/radiol.2019182716

Jain PK, Dubey A, Saba L, Khanna NN, Laird JR, Nicolaides A, Fouda MM, Suri JS, Sharma N. Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm. J. Cardiovasc. Dev. Dis., 9, 326 (2022),https://doi.org/10.3390/jcdd9100326

Jethava A, Ali S, Wakefield D, Crowell R, Sporn J, Vrendenburgh J. Diagnostic Accuracy of MRI in Predicting Breast Tumor Size: Comparative Analysis of MRI vs Histopathological Assessed Breast Tumor Size. Conn. Med., 79, 261–7 (2015) https://doi.org/10.1186/s12957-017-1197-1

Grimsby GM, Gray R, Dueck A, Carpenter S, Stucky C-C, Aspey H, Giurescu ME, Pockaj B. Is there concordance of invasive breast cancer pathologic tumor size with magnetic resonance imaging? Am. J. Surg., 198, 500–4 (2009) https://doi.org/10.1016/j.amjsurg.2009.07.012

Ayat NR, Vaidya A, Yeung GA, Buford MN, Hall RC, Qiao PL, Yu X, Lu Z-R. Effective MR Molecular Imaging of Triple Negative Breast Cancer With an EDB-Fibronectin-Specific Contrast Agent at Reduced Doses. Front. Oncol., 9, (2019) https://doi.org/10.3389/fonc.2019.01351

Leithner D, Moy L, Morris EA, Marino MA, Helbich TH, Pinker K. Abbreviated MRI of the Breast: Does It Provide Value? J. Magn. Reson. Imaging, 49, (2019) https://doi.org/10.1002/jmri.26291

Peters NHGM, Borel Rinkes IHM, Zuithoff NPA, Mali WPTM, Moons KGM, Peeters PHM. Meta-Analysis of MR Imaging in the Diagnosis of Breast Lesions. Radiology, 246, 116–24 (2008) https://doi.org/10.1148/radiol.2461061298

Metcalfe KA, Finch A, Poll A, Horsman D, Kim-Sing C, Scott J, Royer R, Sun P, Narod SA. Breast cancer risks in women with a family history of breast or ovarian cancer who have tested negative for a BRCA1 or BRCA2 mutation. Br. J. Cancer, 100, 421–5 (2009) https://doi.org/10.1038/sj.bjc.6604830

Rahbar H, Partridge SC. Multiparametric MR Imaging of Breast Cancer. Magn. Reson. Imaging Clin. N. Am., 24, 223–38 (2016) https://doi.org/10.1016/j.mric.2015.08.012

Teifke A, Behr O, Schmidt M, Victor A, Vomweg TW, Thelen M, Lehr H-A. Dynamic MR Imaging of Breast Lesions: Correlation with Microvessel Distribution Pattern and Histologic Characteristics of Prognosis. Radiology, 239, 351–60 (2006) https://doi.org/10.1148/radiol.2392050205

Lee SH, Cho N, Kim SJ, Cha JH, Cho KS, Ko ES, Moon WK. Correlation between High Resolution Dynamic MR Features and Prognostic Factors in Breast Cancer. Korean J. Radiol., 9, 10 (2008) https://doi.org/10.3348/kjr.2008.9.1.10

Lee J, Kim SH, Kim Y, Park J, Park GE, Kang BJ. Radiomics Nomogram: Prediction of 2-Year Disease-Free Survival in Young Age Breast Cancer. Cancers (Basel)., 14, (2022) https://doi.org/10.3390/cancers14184461

Gillman J, Toth HK, Moy L. The Role of Dynamic Contrast-Enhanced Screening Breast MRI in Populations at Increased Risk for Breast Cancer. Women’s Heal., 10, 609–22 (2014) https://doi.org/10.2217/whe.14.61

Malayeri AA, El Khouli RH, Zaheer A, Jacobs MA, Corona-Villalobos CP, Kamel IR, Macura KJ. Principles and Applications of Diffusion-weighted Imaging in Cancer Detection, Staging, and Treatment Follow-up. RadioGraphics, 31, 1773–91 (2011) https://doi.org/10.1148/rg.316115515

Petralia G, Bonello L, Priolo F, Summers P, Bellomi M. Breast MR with special focus on DW-MRI and DCE-MRI. Cancer Imaging, 11, 76–90 (2011) https://doi.org/10.1102/1470-7330.2011.0014

Baron P, Dorrius MD, Kappert P, Oudkerk M, Sijens PE. Diffusion-weighted imaging of normal fibroglandular breast tissue: influence of microperfusion and fat suppression technique on the apparent diffusion coefficient. NMR Biomed., n/a-n/a (2010) https://doi.org/10.1002/nbm.1475

Baltzer P, Mann RM, Iima M, Sigmund EE, Clauser P, Gilbert FJ, Martincich L, Partridge SC, Patterson A, Pinker K, Thibault F, Camps-Herrero J, Le Bihan D. Diffusion-weighted imaging of the breast—a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. Eur. Radiol., 30, 1436–50 (2020) https://doi.org/10.1007/s00330-019-06510-3

Glaser KJ, Manduca A, Ehman RL. Review of MR elastography applications and recent developments. J. Magn. Reson. Imaging, 36, 757–74 (2012) https://doi.org/10.1002/jmri.23597

Patel BK, Samreen N, Zhou Y, Chen J, Brandt K, Ehman R, Pepin K. MR Elastography of the Breast: Evolution of Technique, Case Examples, and Future Directions. Clin. Breast Cancer, 21, e102–11 (2021) https://doi.org/10.1016/j.clbc.2020.08.005

Hawley JR, Kalra P, Mo X, Raterman B, Yee LD, Kolipaka A. Quantification of breast stiffness using MR elastography at 3 Tesla with a soft sternal driver: A reproducibility study. J. Magn. Reson. Imaging, 45, 1379–84 (2017) https://doi.org/10.1002/jmri.25511

Pepin KM, Ehman RL, McGee KP. Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications. Prog. Nucl. Magn. Reson. Spectrosc., 90–91, 32–48 (2015) https://doi.org/10.1016/j.pnmrs.2015.06.001

Sinkus R, Siegmann K, Xydeas T, Tanter M, Claussen C, Fink M. MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast‐enhanced MR mammography. Magn. Reson. Med., 58, 1135–44 (2007) https://doi.org/10.1002/mrm.21404

Manduca A, Oliphant TE, Dresner MA, Mahowald JL, Kruse SA, Amromin E, Felmlee JP, Greenleaf JF, Ehman RL. Magnetic resonance elastography: Non-invasive mapping of tissue elasticity. Med. Image Anal., 5, 237–54 (2001) https://doi.org/10.1016/s1361-8415(00)00039-6

Lorenzen J, Sinkus R, Lorenzen M, Dargatz M, Leussler C, Röschmann P, Adam G. MR elastography of the breast:preliminary clinical results. RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der Bildgeb. Verfahren, 174, 830–4 (2002) https://doi.org/10.1055/s-2002-32690

Haddadin IS, McIntosh A, Meisamy S, Corum C, Snyder ALS, Powell NJ, Nelson MT, Yee D, Garwood M, Bolan PJ. Metabolite quantification and high‐field MRS in breast cancer. NMR Biomed., 22, 65–76 (2009) https://doi.org/10.1002/nbm.1217

Stanwell P, Mountford C. In Vivo Proton MR Spectroscopy of the Breast. RadioGraphics, 27, S253–66 (2007) https://doi.org/10.1148/rg.27si075519

Fardanesh R, Marino MA, Avendano D, Leithner D, Pinker K, Thakur SB. Proton MR spectroscopy in the breast: Technical innovations and clinical applications. J. Magn. Reson. Imaging, 50, 1033–46 (2019) https://doi.org/10.1002/jmri.26700

Liberti M V., Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci., 41, 211–8 (2016) https://doi.org/10.1016/j.tibs.2015.12.001

Flavell RR, Naeger DM, Mari Aparici C, Hawkins RA, Pampaloni MH, Behr SC. Malignancies with Low Fluorodeoxyglucose Uptake at PET/CT: Pitfalls and Prognostic Importance: Resident and Fellow Education Feature. RadioGraphics, 36, 293–4 (2016) https://doi.org/10.1148/rg.2016150073

Kawada K, Iwamoto M, Sakai Y. Mechanisms underlying 18 F-fluorodeoxyglucose accumulation in colorectal cancer. World J. Radiol., 8, 880 (2016) https://doi.org/10.4329/wjr.v8.i11.880

Kadoya T, Aogi K, Kiyoto S, Masumoto N, Sugawara Y, Okada M. Role of maximum standardized uptake value in fluorodeoxyglucose positron emission tomography/computed tomography predicts malignancy grade and prognosis of operable breast cancer: a multi-institute study. Breast Cancer Res. Treat., 141, 269–75 (2013) https://doi.org/10.1007/s10549-013-2687-7

Jin S, Kim S, Ahn J, Jung KH, Ahn SH, Son BH, Lee JW, Gong G, Kim HO, Moon DH. 18 F‐fluorodeoxyglucose uptake predicts pathological complete response after neoadjuvant chemotherapy for breast cancer: A retrospective cohort study. J. Surg. Oncol., 107, 180–7 (2013) https://doi.org/10.1002/jso.23255

Narayanan D, Madsen KS, Kalinyak JE, Berg WA. Interpretation of Positron Emission Mammography and MRI by Experienced Breast Imaging Radiologists: Performance and Observer Reproducibility. Am. J. Roentgenol., 196, 971–81 (2011) https://doi.org/10.2214/AJR.10.5081

Hsu DFC, Freese DL, Levin CS. Breast-Dedicated Radionuclide Imaging Systems. J. Nucl. Med., 57, 40S-45S (2016) https://doi.org/10.2967/jnumed.115.157883

Giammarile F, Castellucci P, Dierckx R, Estrada Lobato E, Farsad M, Hustinx R, Jalilian A, Pellet O, Rossi S, Paez D. Non-FDG PET/CT in Diagnostic Oncology: a pictorial review. Eur. J. Hybrid Imaging, 3, 20 (2019) https://doi.org/10.1186/s41824-019-0066-2

Blanchet EM, Millo C, Martucci V, Maass-Moreno R, Bluemke DA, Pacak K. Integrated Whole-Body PET/MRI With 18F-FDG, 18F-FDOPA, and 18F-FDA in Paragangliomas in Comparison With PET/CT. Clin. Nucl. Med., 39, 243–50 (2014) https://doi.org/10.1097/RLU.0000000000000289

Wibmer AG, Hricak H, Ulaner GA, Weber W. Trends in oncologic hybrid imaging. Eur. J. Hybrid Imaging, 2, 1 (2018) https://doi.org/10.1186/s41824-017-0019-6

Escalona S, Blasco JA, Reza MM, Andradas E, Gómez N. A systematic review of FDG-PET in breast cancer. Med. Oncol., 27, 114–29 (2010) https://doi.org/10.1007/s12032-009-9182-3

Jørgensen JT, Norregaard K, Martín MS, Oddershede LB, Kjaer A. Non-invasive Early Response Monitoring of Nanoparticle-assisted Photothermal Cancer Therapy Using 18 F-FDG, 18 F-FLT, and 18 F-FET PET/CT Imaging. Nanotheranostics, 2, 201–10 (2018) https://doi.org/10.7150/ntno.24478

Lyman GH, Somerfield MR, Bosserman LD, Perkins CL, Weaver DL, Giuliano AE. Sentinel Lymph Node Biopsy for Patients With Early-Stage Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol., 35, 561–4 (2017) https://doi.org/10.1200/JCO.2016.71.0947

Cox CE, Kiluk J V., Riker AI, Cox JM, Allred N, Ramos DC, Dupont EL, Vrcel V, Diaz N, Boulware D. Significance of Sentinel Lymph Node Micrometastases in Human Breast Cancer. J. Am. Coll. Surg., 206, 261–8 (2008) https://doi.org/10.1016/j.jamcollsurg.2007.08.024

Kang J, Chang JH, Kim SM, Lee HJ, Kim H, Wilson BC, Song T-K. Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction. Sci. Rep., 7, 45008 (2017) https://doi.org/10.1038/srep45008

Brem RF, Ruda RC, Yang JL, Coffey CM, Rapelyea JA. Breast-Specific γ-Imaging for the Detection of Mammographically Occult Breast Cancer in Women at Increased Risk. J. Nucl. Med., 57, 678–84 (2016) https://doi.org/10.2967/jnumed.115.168385

Karger E, Kureljusic M. Artificial Intelligence for Cancer Detection—A Bibliometric Analysis and Avenues for Future Research. Curr. Oncol., 30, 1626–47 (2023) https://doi.org/10.3390/curroncol30020125

Liu H, Zhan H, Sun D. Comparison of 99mTc-MIBI scintigraphy, ultrasound, and mammography for the diagnosis of BI-RADS 4 category lesions. BMC Cancer, 20, 463 (2020) https://doi.org/10.1186/s12885-020-06938-7

Gong Z, Williams MB. Comparison of breast specific gamma imaging and molecular breast tomosynthesis in breast cancer detection: Evaluation in phantoms. Med. Phys., 42, 4250–9 (2015) https://doi.org/10.1118/1.4922398

Rechtman LR, Lenihan MJ, Lieberman JH, Teal CB, Torrente J, Rapelyea JA, Brem RF. Breast-Specific Gamma Imaging for the Detection of Breast Cancer in Dense Versus Nondense Breasts. Am. J. Roentgenol., 202, 293–8 (2014) https://doi.org/10.2214/AJR.13.11585

Zhang Z, Wang W, Wang X, Yu X, Zhu Y, Zhan H, Chen Z, Li B, Huang J. Breast-specific gamma imaging or ultrasonography as adjunct imaging diagnostics in women with mammographically dense breasts. Eur. Radiol., 30, 6062–71 (2020) https://doi.org/10.1007/s00330-020-06950-2

Surti S. Radionuclide Methods and Instrumentation for Breast Cancer Detection and Diagnosis. Semin. Nucl. Med., 43, 271–80 (2013) https://doi.org/10.1053/j.semnuclmed.2013.03.003

Urbano N, Scimeca M, Tancredi V, Bonanno E, Schillaci O. 99mTC-sestamibi breast imaging: Current status, new ideas and future perspectives. Semin. Cancer Biol., 84, 302–9 (2022) https://doi.org/10.1016/j.semcancer.2020.01.007

Dhankhar R, Vyas SP, Jain AK, Arora S, Rath G, Goyal AK. Advances in Novel Drug Delivery Strategies for Breast Cancer Therapy. Artif. Cells, Blood Substitutes, Biotechnol., 38, 230–49 (2010) https://doi.org/10.3109/10731199.2010.494578

Zumsteg ZS, Morrow M, Arnold B, Zheng J, Zhang Z, Robson M, Traina T, McCormick B, Powell S, Ho AY. Breast-Conserving Therapy Achieves Locoregional Outcomes Comparable to Mastectomy in Women with T1-2N0 Triple-Negative Breast Cancer. Ann. Surg. Oncol., 20, 3469–76 (2013) https://doi.org/10.1245/s10434-013-3011-9

van Maaren MC, de Munck L, Strobbe LJA, Sonke GS, Westenend PJ, Smidt ML, Poortmans PMP, Siesling S. Ten‐year recurrence rates for breast cancer subtypes in the Netherlands: A large population‐based study. Int. J. Cancer, 144, 263–72 (2019) https://doi.org/10.1002/ijc.31914

Cipora E, Konieczny M, Karwat I, Roczniak W, Babuśka-Roczniak M. Surgical method of treatment and level of satisfaction with life among women diagnosed with breast cancer, according to time elapsed since performance of surgery. Ann. Agric. Environ. Med., 25, 453–9 (2018) https://doi.org/10.26444/aaem/91586

Waks AG, Winer EP. Breast Cancer Treatment. JAMA, 321, 288 (2019) https://doi.org/10.1001/jama.2018.19323

Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, Anderson B, Burstein HJ, Chew H, Dang C, Elias AD, Giordano SH, Goetz MP, Goldstein LJ, Hurvitz SA, Isakoff SJ, Jankowitz RC, Javid SH, Krishnamurthy J, Leitch M, Lyons J, Mortimer J, Patel SA, Pierce LJ, Rosenberger LH, Rugo HS, Sitapati A, Smith KL, Smith M Lou, Soliman H, Stringer-Reasor EM, Telli ML, Ward JH, Wisinski KB, Young JS, Burns J, Kumar R. Breast Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw., 20, 691–722 (2022) https://doi.org/10.6004/jnccn.2020.0016

Özdemir A, Mayir B, Demirbakan K, Oygür N. Efficacy of Methylene Blue in Sentinel Lymph Node Biopsy for Early Breast Cancer. J. breast Heal., 10, 88–91 (2014) https://doi.org/10.5152/tjbh.2014.1914

Wilson RE. Surgical management of locally advanced and recurrent breast cancer. Cancer, 53, 752–7 (1984) https://doi.org/10.1002/1097-0142(19840201)53:3+<752::aid-cncr2820531324>3.0.co;2-2

Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet (London, England), 355, 1757–70 (2000) https://doi.org/10.1016/S0140-6736(11)61629-2

Donegan WL, Perez-Mesa CM, Watson FR. A biostatistical study of locally recurrent breast carcinoma. Surg. Gynecol. Obstet., 122, 529–40 (1966) https://doi.org/10.1111/j.1075-122X.2006.00240.x

Halverson KJ, Perez CA, Kuske RR, Garcia DM, Simpson JR, Fineberg B. Isolated local-regional recurrence of breast cancer following mastectomy: Radiotherapeutic management. Int. J. Radiat. Oncol., 19, 851–8 (1990) https://doi.org/10.1016/0360-3016(90)90004-4

Whelan TJ, Pignol J-P, Levine MN, Julian JA, MacKenzie R, Parpia S, Shelley W, Grimard L, Bowen J, Lukka H, Perera F, Fyles A, Schneider K, Gulavita S, Freeman C. Long-Term Results of Hypofractionated Radiation Therapy for Breast Cancer. N. Engl. J. Med., 362, 513–20 (2010) https://doi.org/10.1056/NEJMoa0906260

Haviland JS, Owen JR, Dewar JA, Agrawal RK, Barrett J, Barrett-Lee PJ, Dobbs HJ, Hopwood P, Lawton PA, Magee BJ, Mills J, Simmons S, Sydenham MA, Venables K, Bliss JM, Yarnold JR. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol., 14, 1086–94 (2013) https://doi.org/10.1016/S1470-2045(13)70386-3

Polgár C, Ott OJ, Hildebrandt G, Kauer-Dorner D, Knauerhase H, Major T, Lyczek J, Guinot JL, Dunst J, Miguelez CG, Slampa P, Allgäuer M, Lössl K, Polat B, Kovács G, Fischedick A-R, Fietkau R, Resch A, Kulik A, Arribas L, Niehoff P, Guedea F, Schlamann A, Pötter R, Gall C, Uter W, Strnad V. Late side-effects and cosmetic results of accelerated partial breast irradiation with interstitial brachytherapy versus whole-breast irradiation after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: 5-year resul. Lancet Oncol., 18, 259–68 (2017) https://doi.org/10.1016/S1470-2045(17)30011-6

Ciabattoni A, Gregucci F, Fastner G, Cavuto S, Spera A, Drago S, Ziegler I, Mirri MA, Consorti R, Sedlmayer F. IOERT versus external beam electrons for boost radiotherapy in stage I/II breast cancer: 10-year results of a phase III randomized study. Breast Cancer Res., 23, 46 (2021) https://doi.org/10.1186/s13058-021-01424-9

Swain, S. M., Baselga, J., Kim, S. B., Ro, J., Semiglazov, V., Campone, M., Ciruelos, E., Ferrero, J. M., Schneeweiss, A., Heeson, S., Clark, E., Ross, G., Benyunes, M. C., Cortés, J., & CLEOPATRA Study Group. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. The New England Journal of Medicine, 372(8), 724–734. (2015) https://doi.org/10.1056/NEJMoa1413513

Veronesi U, Orecchia R, Maisonneuve P, Viale G, Rotmensz N, Sangalli C, Luini A, Veronesi P, Galimberti V, Zurrida S, Leonardi MC, Lazzari R, Cattani F, Gentilini O, Intra M, Caldarella P, Ballardini B. Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): a randomised controlled equivalence trial. Lancet Oncol., 14, 1269–77 (2013) https://doi.org/10.1016/S1470-2045(13)70497-2

McBride A, Allen P, Woodward W, Kim M, Kuerer HM, Drinka EK, Sahin A, Strom EA, Buzdar A, Valero V, Hortobagyi GN, Hunt KK, Buchholz TA. Locoregional Recurrence Risk for Patients With T1,2 Breast Cancer With 1-3 Positive Lymph Nodes Treated With Mastectomy and Systemic Treatment. Int. J. Radiat. Oncol., 89, 392–8 (2014) https://doi.org/10.1016/j.ijrobp.2014.02.013

Muhsen S, Moo T-A, Patil S, Stempel M, Powell S, Morrow M, El-Tamer M. Most Breast Cancer Patients with T1-2 Tumors and One to Three Positive Lymph Nodes Do Not Need Postmastectomy Radiotherapy. Ann. Surg. Oncol., 25, 1912–20 (2018) https://doi.org/10.1245/s10434-018-6422-9

Wu S-G, Wang J, Lian C-L, Lei J, Hua L, Lin Q, Chen Y-X, He Z-Y.Evaluation of the 8th edition of the American joint committee on cancer’s pathological staging system in prognosis assessment and treatment decision making for stage T1-2N1 breast cancer after mastectomy. The Breast, 51, 2–10 (2020) https://doi.org/10.1016/j.breast.2020.02.012

Verma, S., Miles, D., Gianni, L., Krop, I. E., Welslau, M., Baselga, J., Pegram, M., Oh, D. Y., Diéras, V., Guardino, E., Fang, L., Lu, M. W., Olsen, S., Blackwell, K., & EMILIA Study Group Trastuzumab emtansine for HER2-positive advanced breast cancer. The New England Journal of Medicine, 367(19), 1783–1791. (2012) https://doi.org/10.1056/NEJMoa1209124

Mieog JSD, van der Hage JA, van de Velde CJH. Neoadjuvant chemotherapy for operable breast cancer. Br. J. Surg., 94, 1189–200 (2007) https://doi.org/10.1002/bjs.5894

Takada M, Imoto S, Ishida T, Ito Y, Iwata H, Masuda N, Mukai H, Saji S, Ikeda T, Haga H, Saeki T, Aogi K, Sugie T, Ueno T, Ohno S, Ishiguro H, Kanbayashi C, Miyamoto T, Hagiwara Y, Toi M. A risk-based subgroup analysis of the effect of adjuvant S-1 in estrogen receptor-positive, HER2-negative early breast cancer. Breast Cancer Res. Treat., 202, 485–96 (2023) https://doi.org/10.1007/s10549-023-07099-4

Walsh EM, Keane MM, Wink DA, Callagy G, Glynn SA. Review of Triple Negative Breast Cancer and the Impact of Inducible Nitric Oxide Synthase on Tumor Biology and Patient Outcomes. Crit. Rev. Oncog., 21, 333–51 (2016) https://doi.org/10.1615/CritRevOncog.2017021307

Suman VJ, Du L, Hoskin T, Anurag M, Ma C, Bedrosian I, Hunt KK, Ellis MJ, Symmans WF. Evaluation of Sensitivity to Endocrine Therapy Index (SET2,3) for Response to Neoadjuvant Endocrine Therapy and Longer-Term Breast Cancer Patient Outcomes (Alliance Z1031). Clin. Cancer Res., 28, 3287–95 (2022) https://doi.org/10.1158/1078-0432.CCR-22-0068

Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet, 378, 771–84 (2011) https://doi.org/10.1016/S0140-6736(11)60993-8

Cole KM, Clemons M, Alzahrani M, Liu M, Larocque G, MacDonald F, Hutton B, Piper A, Fernandes R, Pond GR, Vandermeer L, Emam K El, McGee SF. Vasomotor symptoms in early breast cancer-a “real world” exploration of the patient experience. Support. Care Cancer, 30, 4437–46 (2022) https://doi.org/10.1007/s00520-022-06848-3

Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet, 386, 1341–52 (2015) https://doi.org/10.1016/S0140-6736(15)61074-1

Knauer M, Filipits M, Dubsky P. Late Recurrences in Early Breast Cancer: For Whom and How Long Is Endocrine Therapy Beneficial? Breast Care, 9, 97–97 (2014) https://doi.org/10.1159/000362482

Mazzeo, R., Sears, J., Palmero, L., Bolzonello, S., Davis, A. A., Gerratana, L., & Puglisi, F. (2024). Liquid biopsy in triple-negative breast cancer: unlocking the potential of precision oncology. ESMOOpen, 9, 103700(2024) https://doi.org/10.1016/j.esmoop.2024.103700

Mann RM, Hooley R, Barr RG, Moy L. Novel Approaches to Screening for Breast Cancer. Radiology, 297, 266–85 (2020) ,https://doi.org/10.1148/radiol.2020200172

Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh D-Y, Diéras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K. Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. N. Engl. J. Med., 367, 1783–91 (2012) https://doi.org/10.1056/NEJMoa1209124

Daly MB, Pal T, Berry MP, Buys SS, Dickson P, Domchek SM, Elkhanany A, Friedman S, Goggins M, Hutton ML, Karlan BY, Khan S, Klein C, Kohlmann W, Kurian AW, Laronga C, Litton JK, Mak JS, Menendez CS, Merajver SD, Norquist BS, Offit K, Pederson HJ, Reiser G, Senter-Jamieson L, Shannon KM, Shatsky R, Visvanathan K, Weitzel JN, Wick MJ, Wisinski KB, Yurgelun MB, Darlow SD, Dwyer MA. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw., 19, 77–102 (2021) https://doi.org/10.6004/jnccn.2021.0001

Patterson SK, Noroozian M. Update on Emerging Technologies in Breast Imaging. J. Natl. Compr. Cancer Netw., 10, 1355–62 (2012) https://doi.org/10.6004/jnccn.2012.0141

Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im S-A, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med., 379, 2108–21 (2018) https://doi.org/10.1056/NEJMoa1809615

Finn RS, Martin M, Rugo HS, Jones S, Im S-A, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S, Gauthier E, Lu DR, Randolph S, Diéras V, Slamon DJ. Palbociclib and Letrozole in Advanced Breast Cancer. N. Engl. J. Med., 375, 1925–36 (2016) https://doi.org/10.1056/NEJMoa1607303

Tang X, Loc WS, Dong C, Matters GL, Butler PJ, Kester M, Meyers C, Jiang Y, Adair JH. The use of nanoparticulates to treat breast cancer. Nanomedicine (Lond)., 12, 2367–88 (2017) https://doi.org/10.2217/nnm-2017-0202

Published

2024-10-31

How to Cite

Hoque, N., Choudhury, A. ., Baishya, D. ., & Deka, H. . (2024). Comprehensive review of breast cancer risk factors, diagnosis, screening, and treatment methods. Journal of Applied Pharmaceutical Research, 12(5), 16-27. https://doi.org/10.69857/joapr.v12i5.606

Issue

Section

Articles