Dendrimers: novel carriers for drug delivery

Authors

  • H. S. Chaudhari IBSS College of Pharmacy, Malkapur Dist- Buldhana Maharastra 443101
  • R. R. Popat IBSS College of Pharmacy, Malkapur Dist- Buldhana Maharastra 443101
  • V. S. Adhao IBSS College of Pharmacy, Malkapur Dist- Buldhana Maharastra 443101
  • V. N. Shrikhande IBSS College of Pharmacy, Malkapur Dist- Buldhana Maharastra 443101

Keywords:

Dendrimers, generations, divergent

Abstract

Dendrimers are highly branched, organic compounds with well-defined, symmetrical structure. From chemical point of view they are three-dimensional polymers, characterized by a globular shape. At the end of the arms are terminals, functional groups, which can be easily modified in order to change their chemical and physical properties. Dendrimers have nanoscopic particle size range from 1 to 100 nm. They are ideal drug delivery systems due to their feasible topology, functionality and dimensions, their size is very close to various important biological polymers and assemblies such as DNA and proteins. The structure of dendrimer molecules begins with a central atom or group of atoms labeled as the “core.” From this central structure, branches of other atoms called ‘dendrons.’ The continuous branching results in layers of branch structure called “generations.”Synthesis of dendrimers done by four methods. These are ‘Divergent’ Dendrimer Growth , ‘Convergent’ Dendrimer Growth ,‘Double Exponential’ and ‘Mixed’ Growth ,‘Click’ Synthesis (Hypercores and branched monomers growth). Mechanisms of drug loading onto dendrimer carriers by physical encapsulation of drug molecules and chemical conjugation of drug molecules. The conjugates show increased solubility, decreased systemic toxicity and selective accumulation in solid tumors. Various applications as pharmaceutical and non pharmaceuticals. Dendrimers may have toxicity mainly attributed to the interaction of the cationic dendrimers surface with negative biological load membranes damaging cellular membranes causing hemolytic toxicity and cytotoxicity also limitation that does not apply where the drug is solubilised with dendrimer and then released in the gut for absorption. Some Marketed products of dendrimers are available named as Starburst, Priostar, Stratus CS, Vivagel, Alert ticket, SuperFect, Taxotere.

Downloads

Download data is not yet available.

References

Urbanczyk L Z. Dendrymery w naukach biomedycznych. Gaz Farm 2008; 11, 34–36

Buhleier EW, Wehner W, and Vogtle F. Cascade and Nonskid Chain-like Synthesis of Molecular Cavity Topologies.1978; Synthesis 55 (2): 155–58.

Patri K, Majoros I J, Baker J R. Dendritic polymer macromolecular carriers for drug delivery, Curr Opin Chem Biol.2002; 6: 466-71.

Morgenroth F, Reuther E, MullenK. Polyphenylene Dendrimers: From ThreeDimensional to Two-Dimensional Structures Angewandte Chemie. International Edition inEnglish.1997;36 (6): 631-634.

Nanjwade B K, Hiren M. Dendrimers: Emerging polymers for drug-delivery systems. Eur J Pharm Sci. 2009; 38 (3): 185-196 .

Tomalia D A, Dewald J R, Hall M R, Martin S J, Smith P B. Preprints of the 1st SPSJ International Polymer Conference, Society of Polymer Science Japan, Kyoto, 1984; p 65.

Tomalia, D A, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. Polym J. 1985; 17, 117–32.

de Gennes P G, Hervet H J. J Phys Lett 1983; 44, 351.

Tomalia D A, Naylor A. M, Goddard W A. III. Angew Chem 1990; 102(2):119–57.

Tomalia D A, Naylor A M, Goddard W. A. III. Angew Chem Int Ed Engl 1990; 29(2): 138–75.

Frechet J M J, Tomalia D. A. Dendrimers and Other Polymers; Wiley: West Sussex, 2001.

Tomalia D A, Brothers II H M, Piehler L T, Durst H D, Swanson D R. Proc Nat Acad Sci 2002; 99, 5081–87.

Tomalia, D A, Uppuluri S, Swanson D R. Li, J. Pure Appl Chem 2000; 72(12): 2343–58.

Frechet J M J, Jiang Y, Hawker C J, Philippides A. E. Proceedings of IUPAC International Symposium, Macromolecules, Seoul, Korea, 1989; pp 19–20.

Hawker C J, Frechet J M. J. J Chem Soc Chem Commun 1990; 1010–13.

Hawker C J, Frechet J M J. J Am Preparation of polymers with controlled molecular architecture Chem Soc 1990; 112, 7638.

Miller T M, Neenan T X. Chem Mater 1990; 2, 346–49.

Kwock E W, Neenan T X, Miller T M. Chem Mater 1991; 3, 775.

HawkerC J, Frechet J M J. Macromolecules 1990; 23, 4726–29.

Wooley K L, Hawker C J, Frechet J M J. J Chem Soc Perkin Trans 1 1991; 1059-76.

Sakthivel T, Toth I, Florence AT: Synthesis and physicochemical properties of lipophilic polyamide dendrimers, Pharm. Res., 15, 1998; pp776-82.

Peeyush kumar, MeenaKP, Pramod Kumar, Champalal Choudhary, Devendra Singh Thakur, Pranav Bajpaye; Dendrimer: A Novel Polymer For Drug Delivery; JITPS 2010; Vol.1 (6) ISSN: 0975–8593, pp252-69.

TomaliaD A.Birth of a new macromolecular architecture:dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci.2005; 30 (3–4): 294 – 324.

Barbara K, MariaB. Review Dendrimers: properties and applications, Acta Biochimica Polonica . (2001);48 (1): 199–208, .

Chai M, NiuY, Youngs W J, Rinaldi P L. Structure and conformation of DAB dendrimers in solution via multidimensional NMR techniques, J. Am. Chem. Soc.(2001);123: 4670– 78.

CramptonH L, SimanekE E. Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers, Polymer international, (2007);56 (4) :489-96.

Newkome GR, Yao ZQ, Baker GR and Gupta VK. Cascade molecules: A new approach to micelles. J. Org. Chem.1985; 50: 2003–06.

Shinde GV, Bangale GS, Umalkar DK, Rathinaraj BS, Yadav CS, Yadav P, Dendrimers. Journal of Pharmaceutical and Biomedical Sciences, 2010; 03(03): 1-8.

YiyunC., ZhenhuaX., MingluM., TonguenX. Dendrimers as Drug Carriers: Applications in Different Routes of Drug, J.Pharma.Sci., (2008);97(1): 123-43 .

GilliesE R, FrechetJ. M. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today (2005);10: 35–43.

Pushkar S, Philip A, Pathak K,Pathak D. Dendrimers: Nanotechnology Derived Novel Polymers in Drug Delivery. Indian J. Pharm. Educ. Res.2006; 40: 153-58.

Lee J W, Kim J H, Hee Joo Kim S, Han C, Kim J H, ShinW S, Jin SH. Bioconj. Chem. 2007;18, 579.

Kolb H C, Finn M G, Sharpless K B. Angew. Chem., Int. Ed. 2001;40, 2004.

Wu P, Feldman A K, Nugent A K, Hawker C J, Scheel A, Brigitte V, Pyun J, Frechet J M J, Sharpless K B, Fokin V V.Angew. Chem., Int. Ed. 2004;43, 3928.

Wu P, Malkoch M, Hunt J N, Vestberg R, Kaltgrad E, Finn M G, Fokin V V, Sharpless K. B.; Hawker, C. J. Chem. Commun. 2005; 5775.

Lee J W, Kim J H, Kim BK, Kim J H, Shin W S, JinSH. Tetrahedron 2006;62, 9193.

Sonke S, Tomalia DA,Dendrimers in biomedical applications reflections on the Field, Advanced Drug Delivery Reviews, 2005; 21A6 – 2129, 57.

Patel RP et al. Dendrimers: A new innovation in drug delivery, Pharma Bio World, 2007; 42-52.

Gillies ER, Frechet JMJ,Dendrimers and dendritic polymers in drug delivery, Drug Discovery Today, 2005;1A, 35-43.

Boas U, Jorn Bolstad Christensen, Heegaard PMH, Dendrimers in medicine and biotechnology: new molecular tools, 2006; 62-70.

Padilla De Jess O L, Ihre H R, Gagne L, Frechet J M J, SzokaF C. Bioconj. Chem. 2002; 13, 453.

Lee C C, Gillies E R, Fox M E, Guillaudeu S J, Frechet J M J, Dy E E, Szoka F C. Proc. Natl. Acad. Sci. 2006; 103, 16649.

Falciani C, Fabbrini M, Pini A, Lozzi L, Lelli B, Pileri S, Brunetti J, Bindi S, Scali S, Bracci L. Mol. Cancer Ther. 2007; 6, 2441.

Barth R F, Adams D M, Soloway A H, Alam F, Darby M V. Bioconj. Chem. 1994; 5, 58.

Alam F, Soloway A H, Barth R F, Mafune N, Adams D M, Knoth W H J. Med. Chem. 1989; 32, 2326.

Malik N, Evagorou E G, Duncan R. Anticancer Drugs 1999; 10, 767.

Myc A, Patri A K, Baker J R. Biomacromolecules 2007; 8, 2986.

Rihova B, Etrych T, Pechar M, Jelinkova M, Stastny M, Hovorka O, Kova M, Ulbrich K. J. Controlled Release 2001; 74, 225.

Achar S, Puddephatt RJ, Organoplatinum dendrimers formed by oxidative addition. Angew. Chem., Int. Ed. Engl., 1994; 33(8): 847–49.

Miller LL, Duan RG, Tully DC, Tomalia DA, Electrically conducting dendrimers. J. Am. Chem. Soc., 1997; 119(92): 1005–10.

Wilken R, Adams J, End group dynamics of fluorescently labeled dendrimers. Macromol. Rapid Commun, 1997; 18(8): 659– 65.

Hummelen CJ, Dongen JLIV, Meijer EW, Electrospray mass spectrometry of poly(propylene imine) dendrimers the issue of dendritic purity or polydispersity. Chem. Eur. J., 1997; 3(9): 1489– 93.

Sakthivel T, Toth I, Florence AT, Synthesis and physicochemical properties of lipophilic polyamide dendrimers. Pharm. Res., 1998; 15(5): 776-82.

Larre C, Bressolles D, Turrin C, Donnadieu B, Caminade AM, Majoral JP, Chemistry within mega molecules: regiospecific functionalization after construction of phosphorus dendrimers. J. Am. Chem. Soc. 1998; 120(50): 13070– 82.

Chu B, Hsiao BS, Small-angle X-ray scattering of polymers. Chem. Rev., 2001; 101(6): 1727– 62 , 2001.

Prosa TJ, Bauer BJ, Amis EJ, Tomalia DA, Scherrenberg R, A SAXS study of the internal structure of dendritic polymer systems. J. Polym. Sci., 1997; 35(17): 2913– 24.

Rietveld IB, Smit JAM, Colligative and viscosity properties of poly(propylene imine) dendrimers in methanol. Macromolecules, 1999; 32(14): 4608–14.

Topp A, Bauer BJ, KlimashB JW, Spindler R, Tomalia DA, Amis EJ, Probing the location of the terminal groups of dendrimers in dilute solution. Macromolecules, 1999; 32(21): 7226– 31.

Hofkens J, Verheijen W, Shukla R, Dehaen W, De Schryver FC, Detection of a single dendrimer macromolecule with a fluorescent dihydropyrrolopyrroledione (DPP) core embedded in a thin polystyrene polymer film. Macromolecules, 1998; 31(14): 4493– 97.

Gensch T, Hofkens J, Heirmann A, Tsuda K, Verheijen W, Vosch R, Fluorescence detection from single dendrimers with multiple chromophores, Angew. Chem., Int. Ed. Engl., 1999; 38(24): 3752–56.

Zeng F, Zimmerman SC, Kolotuchin SV, Reichert DEC, Supramolecular polymer chemistry: design, synthesis, characterization, and kinetics, thermodynamics, and fidelity of formation of self-assembled dendrimers. Tetrahedron, 2002; 58(4), 825– 43.

Francese G, Dunand FA, Loosli C, Merbach AE, Decurtins S, Functionalization of PAMAM dendrimers with nitronyl nitroxide radicals as models for the outer-sphere relaxation in dendritic potential MRI contrast agents. Magn. Reson. Chem., 2003; 41(2): 81– 83.

Tabakovic I, Miller LL, Duan RG, Tully DC, Tomalia DA, Dendrimers peripherally modified with anion radicals that form C-dimers and Cstacks. Chem. Mater, 1997; 9(3): 736– 45.

KukowskaLatallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR, Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. U. S. A., 1996; 93(10): 4897– 4902.

Mourey TH, Turner SR, Rubinstein M, Frechet JMJ, Hawker CJ, Wooley KL, Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules, 1992; 25(9): 2401– 06.

Matos MS, Hofkens J, Verheijen W, De Schryver FC, Hecht S, Pollak KW, Effect of core structure on photophysical and hydrodynamic properties of porphyrin dendrimers. Macromolecules, 2000; 33(8): 2967–73.

Dantras E, Dandurand J, Lacabanne C, Caminade AM, Majoral JP, Enthalpy relaxation in phosphorus-containing dendrimers. Macromolecules, 2002; 35(6): 2090– 94.

Trahasch B, Stu B, Frey H, Lorenz K, Dielectric relaxation in carbosilane dendrimers with perfluorinated end groups. Macromolecules, 1999; 32(6): 1962– 66.

Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown N.B and D’Emanuele A. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res. 2003; 20: 1543– 50.

Satija J, Gupta U and Jain NK. Pharmaceutical and biomedical potential of surface engineered dendrimers. Crit Rev Ther Drug Carrier Syst. 2007; 24: 257-306.

Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of I-125-labelled polyamidoamine dendrimers in vivo. J.Control. Release 2000; 65: 133– 48.

Uchegbu IF, Sadiq L, Pardakhty A, El-Hammadi M, Gray AI, Tetley L et al. Gene transfer with three amphiphilic glycol chitosans —the degree of polymerisation is the main controller of transfection efficiency. J. Drug Target. 2004; 12: 527–39.

Brownlie A, Uchegbu IF and Schatzlein AG. PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. Int. J. Pharm. 2004; 274: 41– 52.

Schatzlein AG, Zinselmeyer BH, Elouzi A, Dufes C, Chim YT, Roberts CJ et al. Preferential liver gene expression with polypropylenimine dendrimers. J. Control. Release, 2005; 101: 247– 58.

Chen HT, Neerman MF, Parrish AR and Simanek EE. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc. 2004; 126: 10044– 48.

Gillies ER. and Fréchet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today 2005; 10: 35-43.

Esfand R. and Tomalia, DA. Polyamidoamine (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 2001; 6: 427–36.

Jevpraesesphant R. et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int.J. Pharm. 2003; 252: 263–66.

Hawker CJ, and Fréchet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am.Chem. Soc.1990; 112: 7638–47.

Liu M. et al. Water-soluble unimolecular micelles: their potential as drug delivery agents. J. Control. Release. 2000; 65: 121–31.

Liu M. et al. Water-soluble dendrimer–polyethylene glycol starlike conjugates as potential drug carriers. J. Polym. Sci. A. 1999; 37: 3492–3503.

Haag R. et al. An approach to glycerol dendrimers and pseudo-dendritic polyglycerols. J. Am. Chem. Soc. 2000; 122: 2954–55.

Neerman MF et al. In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int. J. Pharm. 2004; 281: 129–32.

Caminade AM, Laurent R. and Majoral JP. Characterization of dendrimers. Advanced Drug Delivery Reviews. 2005; 57: 2130-46.

Kabanov AV, Batrakova EV, Alakhov VY, Pluronic< sup>® block copolymers as novel polymer therapeutics for drug and gene delivery, Journal of controlled release, 2002; 82(2): 189-212.

Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA, Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers, International Journal of Nanomedicine, 4, 2009, 1.

Pettit MW, Griffiths P, Ferruti P, Richardson SC, Poly (amidoamine) polymers: soluble linear amphiphilic drugdelivery systems for genes, proteins and oligonucleotides, Therapeutic Delivery, 2011;2(7): 907-17.

Qin W, Yang K, Tang H, Tan L, Xie Q, Ma M, Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids and Surfaces B: Biointerfaces.2011;84(1):206-13.

Patri AK, Kukowska-Latallo JF, Baker Jr JR, Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex, Advanced drug delivery reviews. 2005;57(15): 2203-14.

Kukowska Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, et al., Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer, Cancer research.2005; 65(12): 5317-24.

He H, Li Y, Jia X-R, Du J, Ying X, Lu W-L, PEGylated Poly (amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors, Biomaterials.2011; 32(2): 478-87.

Ciolkowski M, Petersen JF, Ficker M, Janaszewska A, Christensen JB, Klajnert B, et al., Surface modification of PAMAM dendrimer improves its biocompatibility, Nanomedicine: Nanotechnology, Biology and Medicine.2012; 8(6): 815-81.

Fu HL, Cheng SX, Zhang XZ, Zhuo RX, Dendrimer/DNA complexes encapsulated functional biodegradable polymer for substrate‐mediated gene delivery, The journal of gene medicine.2008; 10(12):1334-42.

Campos BB, Algarra M, da Silva JCE, Fluorescent properties of a hybrid cadmium sulfide-dendrimer nanocomposite and its quenching with nitromethane, Journal of fluorescence.2010; 20(1): 143-51.

Grabchev I, Staneva D, Chovelon JM, Photophysical investigations on the sensor potential of novel, poly (propylenamine) dendrimers modified with 1, 8naphthalimide units, Dyes and Pigments.2010; 85(3): 189-93.

Twyman LJ, Ellis A, Gittins PJ, Pyridine encapsulated hyperbranched polymers as mimetic models of haeme containing proteins, that also provide interesting and unusual porphyrin-ligand geometries, Chem Commun..2011; 48(1):154-56.

Twyman LJ, Ge Y, Porphyrin cored hyperbranched polymers as heme protein models, Chem Commun.2006; (15):1658-60.

Boas U, Heegaard PM, Dendrimers in drug research, Chemical Society Reviews. 2004; 33(1):43-63.

Vandamme TF, Brobeck L, Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide, Journal of controlled release.2005; 102(1): 23-38.

Peeyush Kumar et al., Dendrimer: a novel polymer for drug delivery, JITPS 2010;1(6): 252-69

Published

2016-03-05

How to Cite

Chaudhari, H. S., Popat, R. R., Adhao, V. S., & Shrikhande, V. N. (2016). Dendrimers: novel carriers for drug delivery. Journal of Applied Pharmaceutical Research, 4(1), 01-19. Retrieved from https://japtronline.com/index.php/joapr/article/view/59

Issue

Section

Articles