Metabolic hormonal alterations in functional hypothalamic amenorrhea and anovulation associated with Polycystic ovary syndrome

Authors

  • Shalini Jamwal Department of Pharmacology, School of Pharmacy, Abhilashi University, Chail Chowk, Mandi (HP)
  • Abhishek Soni Department of Pharmaceutics, Abhilashi College of Pharmacy, Nerchowk, Mandi (HP)

DOI:

https://doi.org/10.18231/j.joapr.2024.12.2.1.15

Keywords:

Polycystic ovarian syndrome, Ovulation, Follicle-stimulating hormone, Luteinizing hormone, Growth hormones, Gonadotropin-releasing hormone (GnRH)

Abstract

Background: Polycystic ovary syndrome (PCOS) is a multifaceted endocrine disorder affecting many women during their reproductive years. It is characterized by oligo/amenorrhea, anovulatory cycles, polycystic ovaries, and insulin resistance. This review explores the hormonal and metabolic alterations associated with PCOS, comparing them to functional hypothalamic amenorrhea (FHA). Key aspects include the abnormally high LH pulse frequency in PCOS, indicating hyperactive gonadotropin-releasing hormone (GnRH), and the role of hyperandrogenemia in exacerbating the condition by increasing LH pulse secretion from the pituitary gland. Additionally, the review examines the neuroendocrine basis for PCOS. Methods: The methodology involved analyzing neuroendocrine pathways and physical manifestations through PubMed, ScienceDirect, and Scopus databases. Findings indicate that PCOS is primarily characterized by androgen excess, ovulatory dysfunction, and disruption of the hypothalamic-pituitary-ovarian (HPO) axis. Hormonal dysregulation includes disturbances in GnRH, insulin, LH/FSH ratio, and androgens. GnRH stimulates LH and FSH release from the pituitary, regulating ovarian function, while Anti-Müllerian hormone (AMH) inhibits follicular development in PCOS. Conclusion: The review concludes by highlighting the hormonal alterations, including decreased frequency and amplitude of LH pulses, disruptions in GnRH, LH, and FSH. Genetic predispositions and disturbances in the LH/FSH ratio can lead to impaired follicle growth and polycystic ovaries. This comprehensive exploration underscores the importance of understanding the hormonal and neuroendocrine mechanisms underlying PCOS, contributing to better diagnosis and treatment strategies

Downloads

References

Sadeghi HM, Adeli I, Calina D, Docea AO, Mousavi T, Daniali M, Nikfar S, Tsatsakis A, Abdollahi M. Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. Int J Mol Sci, 23, (2022).

Chen Y, Wang G, Chen J, Wang C, Dong X, Chang H-M, Yuan S, Zhao Y, Mu L. Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocr Rev, (2024).

Khatun M, Lundin K, Naillat F, Loog L, Saarela U, Tuuri T, Salumets A, Piltonen TT, Tapanainen JS. Induced Pluripotent Stem Cells as a Possible Approach for Exploring the Pathophysiology of Polycystic Ovary Syndrome (PCOS). Stem Cell Rev Rep, 20, 67–87 (2024).

Berenji E, Valipour Motlagh A, Fathi M, Esmaeili M, Izadi T, Rezvanian P, Zanjirband M, Safaeinejad Z, Nasr-Esfahani MH. Discovering therapeutic possibilities for polycystic ovary syndrome by targeting XIST and its associated ceRNA network through the analysis of transcriptome data. Sci Rep, 14, (2024).

Vadan RL, Varela N, Zhuravko N, Ogidan NO, Adedara VO, Keku E. Comparative Management Methods for Adolescents With Polycystic Ovarian Syndrome: A Systemic Review. Cureus, 16, (2024).

Dubey P, Reddy S, Sharma K, Johnson S, Hardy G, Dwivedi AK. Polycystic Ovary Syndrome, Insulin Resistance, and Cardiovascular Disease. Curr Cardiol Rep, (2024).

Dong J, Rees DA. Polycystic ovary syndrome: pathophysiology and therapeutic opportunities. BMJ medicine, 2, e000548 (2023).

Zhao H, Zhang J, Cheng X, Nie X, He B. Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. J Ovarian Res, 16, (2023).

Tsai YR, Liao YN, Kang HY. Current Advances in Cellular Approaches for Pathophysiology and Treatment of Polycystic Ovary Syndrome. Cells, 12, (2023).

Heidarpour M, Mojarad M, Mazaheri-Tehrani S, Kachuei A, Najimi A, Shafie D, Rezvanian H. Comparative Effectiveness of Antidiabetic Drugs as an Additional Therapy to Metformin in Women with Polycystic Ovary Syndrome: A Systematic Review of Metabolic Approaches. Int J Endocrinol, 2024, (2024).

Yang X, Liu P, He H, Qi D, Yan L. Comprehensive analysis of ovarian granulosa cell proteomics and phosphoproteomics in PCOS patients without insulin resistance. Mol Hum Reprod, 30, (2024).

Sun C, Zhao S, Pan Z, Li J, Wang Y, Kuang H. The Role Played by Mitochondria in Polycystic Ovary Syndrome. DNA Cell Biol, 43, 158–74 (2024).

Cong P, Shang B, Zhang L, Wu Z, Wang Y, Li J, Zhang L. New insights into the treatment of polycystic ovary syndrome: HKDC1 promotes the growth of ovarian granulocyte cells by regulating mitochondrial function and glycolysis. J Mol Histol, 55, 187–99 (2024).

Stener-Victorin E, Teede H, Norman RJ, Legro R, Goodarzi MO, Dokras A, Laven J, Hoeger K, Piltonen TT. Polycystic ovary syndrome. Nat Rev Dis Primers, 10, 27 (2024).

Shrivastava S, Conigliaro RL. Polycystic Ovarian Syndrome. Med Clin North Am, 107, 227–34 (2023).

Manique MES, Ferreira AMAP. Polycystic Ovary Syndrome in Adolescence: Challenges in Diagnosis and Management. Rev Bras Ginecol Obstet, 44, 425–33 (2022).

Peña AS, Witchel SF, Hoeger KM, Oberfield SE, Vogiatzi MG, Misso M, Garad R, Dabadghao P, Teede H. Adolescent polycystic ovary syndrome according to the international evidence-based guideline. BMC Med, 18, (2020).

Khashchenko E, Uvarova E, Vysokikh M, Ivanets T, Krechetova L, Tarasova N, Sukhanova I, Mamedova F, Borovikov P, Balashov I, Sukhikh G. The Relevant Hormonal Levels and Diagnostic Features of Polycystic Ovary Syndrome in Adolescents. J Clin Med, 9, 1–12 (2020).

Buggs C, Rosenfield RL. Polycystic ovary syndrome in adolescence. Endocrinol Metab Clin North Am, 34, 677–705 (2005).

Blank SK, Helm KD, McCartney CR, Marshall JC. Polycystic ovary syndrome in adolescence. Ann N Y Acad Sci, 1135, 76–84 (2008).

Witchel SF, Oberfield S, Rosenfield RL, Codner E, Bonny A, Ibáñez L, Pena A, Horikawa R, Gomez-Lobo V, Joel D, Tfayli H, Arslanian S, Dabadghao P, Garcia Rudaz C, Lee PA. The Diagnosis of Polycystic Ovary Syndrome during Adolescence. Horm Res Paediatr, 83, 376–89 (2015).

Barbieri RL. The endocrinology of the menstrual cycle, in Human Fertility. 2014, Springer. p. 145-169

Klein DA, Paradise SL, Reeder RM. Amenorrhea: A Systematic Approach to Diagnosis and Management. Am Fam Physician, 100, 39-48 (2019).

Weiss RV, Clapauch R. Female infertility of endocrine origin. Arq Bras Endocrinol Metabol, 58, 144-52 (2014).

Johansson J, Stener-Victorin E. Polycystic ovary syndrome: effect and mechanisms of acupuncture for ovulation induction. Evid Based Complement Alternat Med, 2013, 762615 (2013).

Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol, 6, 1-13 (2013).

Gambineri A, Pelusi C, Vicennati V, Pagotto U, Pasquali R. Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord, 26, 883-96 (2002).

Meczekalski B, Katulski K, Czyzyk A, Podfigurna-Stopa A, Maciejewska-Jeske M. Functional hypothalamic amenorrhea and its influence on women's health. J Endocrinol Invest, 37, 1049-56 (2014).

Gordon CM, Ackerman KE, Berga SL, Kaplan JR, Mastorakos G, Misra M, Murad MH, Santoro NF, Warren MP. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab, 102, 1413-39 (2017).

Meczekalski B, Podfigurna-Stopa A, Warenik-Szymankiewicz A, Genazzani AR. Functional hypothalamic amenorrhea: current view on neuroendocrine aberrations. Gynecol Endocrinol, 24, 4-11 (2008).

Liu JH. Hypothalamic amenorrhea: clinical perspectives, pathophysiology, and management. Am J Obstet Gynecol, 163, 1732-6 (1990).

Maggi R, Cariboni AM, Marelli MM, Moretti RM, Andrè V, Marzagalli M, Limonta P. GnRH and GnRH receptors in the pathophysiology of the human female reproductive system. Hum Reprod Update, 22, 358-81 (2016).

Wardle J. Polycystic ovarian syndrome. Clinical Naturopathy: An evidence-based guide to practice, 2010: p. 383.

Genton P, Bauer J, Duncan S, Taylor AE, Balen AH, Eberle A, Pedersen B, Salas-Puig X, Sauer MV. On the association between valproate and polycystic ovary syndrome. Epilepsia, 42, 295-304 (2001).

Valdes-Socin H, Rubio Almanza M, Tomé Fernández-Ladreda M, Debray FG, Bours V, Beckers A. Reproduction, smell, and neurodevelopmental disorders: genetic defects in different hypogonadotropic hypogonadal syndromes. Front Endocrinol (Lausanne), 5, 109 (2014).

Gordon CM. Clinical practice. Functional hypothalamic amenorrhea. N Engl J Med, 363, 365-71 (2010).

Moenter SM, Evans NP. Gonadotropin-releasing hormone (GnRH) measurements in pituitary portal blood: A history. J Neuroendocrinol, 34, e13065 (2022).

Fourman LT, Fazeli PK. Neuroendocrine causes of amenorrhea--an update. J Clin Endocrinol Metab, 100, 812-24 (2015).

Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, Karalis A, Mantzoros CS. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med, 351, 987-97 (2004).

Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn CR. Role of brain insulin receptor in control of body weight and reproduction. Science, 289, 2122-5 (2000).

Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab, 5, 426-37 (2007).

Owen BM, Bookout AL, Ding X, Lin VY, Atkin SD, Gautron L, Kliewer SA, Mangelsdorf DJ. FGF21 contributes to neuroendocrine control of female reproduction. Nat Med, 19, 1153-6 (2013).

Kokay IC, Petersen SL, Grattan DR. Identification of prolactin-sensitive GABA and kisspeptin neurons in regions of the rat hypothalamus involved in the control of fertility. Endocrinology, 152, 526-35 (2011).

Sonigo C, Bouilly J, Carré N, Tolle V, Caraty A, Tello J, Simony-Conesa FJ, Millar R, Young J, Binart N. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J Clin Invest, 122, 3791-5 (2012).

Ress C, Maeser PA, Tschoner A, Loacker L, Salzmann K, Staudacher G, Melmer A, Zoller H, Vogel W, Griesmacher A, Tilg H, Graziadei I, Kaser S. Serum prolactin in advanced chronic liver disease. Horm Metab Res, 46, 800-3 (2014).

Bergman JE, de Ronde W, Jongmans MC, Wolffenbuttel BH, Drop SL, Hermus A, Bocca G, Hoefsloot LH, van Ravenswaaij-Arts CM. The results of CHD7 analysis in clinically well-characterized patients with Kallmann syndrome. J Clin Endocrinol Metab, 97, E858-62 (2012).

Dodé C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler ML, Lespinasse J, Lienhardt-Roussie A, Mathieu M, Moerman A, Morgan G, Murat A, Toublanc JE, Wolczynski S, Delpech M, Petit C, Young J, Hardelin JP. Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet, 2, e175 (2006).

Seminara SB, Beranova M, Oliveira LM, Martin KA, Crowley WF, Hall JE. Successful use of pulsatile gonadotropin-releasing hormone (GnRH) for ovulation induction and pregnancy in a patient with GnRH receptor mutations. J Clin Endocrinol Metab, 85, 556-62 (2000).

Caronia LM, Martin C, Welt CK, Sykiotis GP, Quinton R, Thambundit A, Avbelj M, Dhruvakumar S, Plummer L, Hughes VA, Seminara SB, Boepple PA, Sidis Y, Crowley WF, Martin KA, Hall JE, Pitteloud N. A genetic basis for functional hypothalamic amenorrhea. N Engl J Med, 364, 215-25 (2011).

Bachelot A, Chakhtoura Z, Plu-Bureau G, Coudert M, Coussieu C, Badachi Y, Dulon J, Charbit B, Touraine P, Akakpo JP, Béllané-Chantelot C, Brue T, Carine C, Jacquesson L, Kuttenn F, Morel Y, Reznik Y, Scherrer H, Tardy V, Young J. Influence of hormonal control on LH pulsatility and secretion in women with classical congenital adrenal hyperplasia. Eur J Endocrinol, 167, 499-505 (2012).

Couzinet B, Young J, Kujas M, Meduri G, Brailly S, Thomas JL, Chanson P, Schaison G. The antigonadotropic activity of a 19-nor-progesterone derivative is exerted both at the hypothalamic and pituitary levels in women. J Clin Endocrinol Metab, 84, 4191-6 (1999).

Akram M, Roohi N. Endocrine correlates of polycystic ovary syndrome in Pakistani women. J Coll Physicians Surg Pak, 25, 22-6 (2015).

Ajmal N, Khan SZ, Shaikh R. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. Eur J Obstet Gynecol Reprod Biol X, 3, 100060 (2019).

Nautiyal H, Imam SS, Alshehri S, Ghoneim MM, Afzal M, Alzarea SI, Güven E, Al-Abbasi FA, Kazmi I. Polycystic Ovarian Syndrome: A Complex Disease with a Genetics Approach. Biomedicines, 10, 540 (2022).

Urbanek M. The genetics of the polycystic ovary syndrome. Nat Clin Pract Endocrinol Metab, 3, 103-11 (2007).

Qiao J, Feng HL. Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update, 17, 17-33 (2011).

Zehravi M, Maqbool M, Ara I. Polycystic ovary syndrome and infertility: an update. Int J Adolesc Med Health, 34, 1-9 (2021).

Ehrmann DA, Sturis J, Byrne MM, Karrison T, Rosenfield RL, Polonsky KS. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J Clin Invest, 96, 520-7 (1995).

De Leo V, Musacchio MC, Cappelli V, Massaro MG, Morgante G, Petraglia F. Genetic, hormonal and metabolic aspects of PCOS: an update. Reprod Biol Endocrinol, 14, 38 (2016).

Rosenfield RL. The Diagnosis of Polycystic Ovary Syndrome in Adolescents. Pediatrics, 136, 1154-65 (2015).

Ganie MA, Vasudevan V, Wani IA, Baba MS, Arif T, Rashid A. Epidemiology, pathogenesis, genetics & management of polycystic ovary syndrome in India. Indian J Med Res, 150, 333-44 (2019).

Glueck CJ, Goldenberg N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism, 92, 108-20 (2019).

Damone AL, Joham AE, Loxton D, Earnest A, Teede HJ, Moran LJ. Depression, anxiety and perceived stress in women with and without PCOS: a community-based study. Psychol Med, 49, 1510-20 (2019).

Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol, 14, 270-84 (2018).

Hegele RA, Ginsberg HN, Chapman MJ, Nordestgaard BG, Kuivenhoven JA, Averna M, Borén J, Bruckert E, Catapano AL, Descamps OS, Hovingh GK, Humphries SE, Kovanen PT, Masana L, Pajukanta P, Parhofer KG, Raal FJ, Ray KK, Santos RD, Stalenhoef AF, Stroes E, Taskinen MR, Tybjærg-Hansen A, Watts GF, Wiklund O. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol, 2, 655-66 (2014).

Popa E, Chiş-Şerban AA, Coman EA. Sindromul ovarelor polichistice (SOPC)–rolul inflamaţiei cronice în exprimarea fenotipului dismetabolic. Medic. ro., 151(1), 38-42 (2023)

Rababa'h AM, Matani BR, Yehya A. An update of polycystic ovary syndrome: causes and therapeutics options. Heliyon, 8, e11010 (2022).

Roy Sarkar S, Mitra Mazumder P, Chatterjee K, Sarkar A, Adhikary M, Mukhopadhyay K, Banerjee S. Saccharomyces boulardii ameliorates gut dysbiosis associated cognitive decline. Physiol Behav, 236, 113411 (2021).

Tang Y, Gan H, Wang B, Wang X, Li M, Yang Q, Geng M, Zhu P, Shao S, Tao F. Mediating effects of DNA methylation in the association between sleep quality and infertility among women of childbearing age. BMC Public Health, 23, 1802 (2023).

Published

2024-04-30

How to Cite

Jamwal, S., & Soni, A. . (2024). Metabolic hormonal alterations in functional hypothalamic amenorrhea and anovulation associated with Polycystic ovary syndrome. Journal of Applied Pharmaceutical Research, 12(2), 01-15. https://doi.org/10.18231/j.joapr.2024.12.2.1.15

Issue

Section

Articles