In vitro anticancer potential of Manilkara hexandra (Roxb.) leaf methanolic extracts via SRB and MTT assays against MCF-7 cell line

Authors

  • Sunayana R. Vikhe Department of Pharmacognosy, Pravara Rural College of Pharmacy, Loni, Maharashtra, India-413736
  • Sarika Vikhe Department of Pharmacognosy, Pravara Rural College of Pharmacy, Loni, Maharashtra, India-413736
  • Vaibhav Bhamare K.K. Wagh Institute of Pharmacy, Pimplas, Nashik, Maharashtra, India

DOI:

https://doi.org/10.69857/joapr.v13i4.1262

Keywords:

Manilkara hexandra, cytotoxicity, phytochemicals, flavonoids, MCF-7cells, Quercetin, traditional medicine

Abstract

Background: Cancer causes millions of deaths worldwide, with cases expected to reach 28.4 million by 2040. Natural plant compounds offer safer alternatives for cancer treatment. Aim: This study tested the anticancer activity of Manilkara hexandra leaf extracts against MCF-7 breast cancer cells. Materials and methods: Methanolic extraction, followed by sequential fractionation via column chromatography, yielded bioactive fractions that underwent phytochemical and GC-MS characterization. Quantification of cytotoxicity was performed using sulforhodamine B (SRB) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays across a concentration gradient (10–80 μg/mL). Result and Discussion: Chemical screening found alkaloids, flavonoids, tannins, and other bioactive compounds. The petroleum ether-ethyl acetate (PE-EA) fraction contained quercetin (25.28%) and another major flavonoid (28.62%). This fraction exhibited strong dose-dependent cell killing, reducing cell survival to 31.8% (SRB) and 33.0% (MTT) at 80 μg/mL (p < 0.001). The IC₅₀ was 55 μg/mL in both assays. Conclusion: The anticancer activity correlates with high flavonoid content, suggesting these compounds cause cell death through apoptosis or cell cycle arrest. M. hexandra PE-EA fraction shows promise as a natural anticancer agent for breast cancer treatment

Downloads

Download data is not yet available.

References

Roy PS, Saikia BJ. Cancer and cure: A critical analysis. Indian J Cancer, 53, 441-442 (2016) https://doi.org/10.4103/0019-509X.200658

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71, 209-249 (2021) https://doi.org/10.3322/caac.21660

Ent V, Ilavarasan R, Kamaraj R. Anti-cancer activities of Schedule E1 drugs used in ayurvedic formulations. J Ayurveda Integr Med., 13, 100545 (2022) https://doi.org/10.1016/j.jaim.2022.100545

Mir SA, Dar A, Hamid L, Nisar N, Malik JA, Ali T. Flavonoids as promising molecules in cancer therapy: An insight. Curr Res Pharmacol Drug Discov., 6, 100167 (2024) https://doi.org/10.1016/j.crphar.2023.100167

Wang H, Khor TO, Shu L, Su ZY, Fuentes F, Lee JH. Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem., 12, 1281-1305 (2012) https://doi.org/10.2174/187152012803833026

Samuel SM, Kubatka P, Busselberg D. Treating cancers using nature's medicine: significance and challenges. Biomolecules, 11, 1698 (2021) https://doi.org/10.3390/biom11111698

Singh S, Jha MK. A comprehensive pharmacognostic review: Manilkara hexandra (Roxb.) Dubard. Int J Pharm Sci Res., 11, 1560-1568 (2020) https://doi.org/10.13040/IJPSR.0975-8232

Saxena PK, Nanda D, Gupta R. Assessment of hepatoprotective potential of Manilkara hexandra stem bark: An in-vitro analysis. J Pharm Res Int., 33, 19-38 (2021) https://doi.org/10.9734/jpri/2021/v33i42B32422

Chaudhary SK, Sharma A, Bhatia S, Kumari S, Goyal A, Nagpal K, et al. Review on phytochemistry, biology and nano formulations of Manilkara hexandra: An update. Clin Complement Med Pharmacol., 3, 100069 (2023) https://doi.org/10.1016/j.ccmp.2022.100069

Sisodiya A. Determination of quercetin in Euphorbia thymifolia and Manilkara hexandra extracts using RP-HPLC. Int J Pharm Sci Res., 12, 4451-4456 (2021) https://doi.org/10.13040/IJPSR.0975-8232

Sisodiya A, Shrivastava P. Phytochemical screening, thin layer chromatography and quantitative estimation of bioactive constituents in aqueous extract of Manilkara hexandra (Roxb.) Dubard. Int J Sci Res., 9, 23242-23245 (2018) http://dx.doi.org/10.24327/ijrsr.2018.0901.142

Bele A, Khale A. An overview on thin layer chromatography. Int J Pharm Sci., 2, 256-267 (2011) http://dx.doi.org/10.13040/IJPSR

Monisha SI, Vimala R. Extraction, identification and pharmacological evaluation of phyto-active compound in Manilkara hexandra (Roxb.) Dubard stem bark. Biosci Biotechnol Res Asi, 15, 687-698 (2018) https://doi.org/10.13005/bbra/2677

Dutta S, Ray S. Comparative assessment of total phenolic content and in vitro antioxidant activities of bark and leaf methanolic extracts of Manilkara hexandra (Roxb.) Dubard. J King Saud Univ Sci., 32, 285-291 (2020) https://doi.org/10.1016/j.jksus.2018.09.015

Gomathi D, Kalaiselvi M, Ravikumar G, Devaki K, Uma C. GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulusalsinoides (L.) L. J Food Sci Technol, 52, 1212-1217 (2015) https://doi.org/10.1007/s13197-013-1105-9

Chikowe I, Bwaila KD, Ugbaja SC, Abouzied AS. GC-MS analysis, molecular docking, and pharmacokinetic studies of Multidentiacrassa extracts' compounds for analgesic and anti-inflammatory activities in dentistry. Sci Rep., 14, 1876 (2024) https://doi.org/10.1038/s41598-023-47737-x

Lakhdari W, Benyahia I, Bouhenna MM, Bendif H, Khelafi H, Bachir H, et al. Exploration and evaluation of secondary metabolites from Trichoderma harzianum: GC-MS analysis, phytochemical profiling, antifungal and antioxidant activity assessment. Molecules, 28, 5025 (2023) https://doi.org/10.3390/molecules28135025

Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc., 1, 1112-1116 (2006) https://doi.org/10.1038/nprot

Kode J, Kovvuri J, Nagaraju B, Jadhav S, Barkume M, Sen S. Synthesis, biological evaluation and molecular docking analysis of phenstatin based indole linked chalcones as anticancer agents and tubulin polymerization inhibitors. Bioorg Chem., 105, 104447 (2020) https://doi.org/10.1016/j.bioorg.2020.104447

Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst., 82, 1107-1111 (1990) https://doi.org/10.1093/jnci/82.13.1107

Kholiya F, Chatterjee S, Bhojani G, Sen S, Barkume M, Kasinathan NK, et al. Seaweed polysaccharide derived bioaldehyde nanocomposite: Potential application in anticancer therapeutics. Carbohydr Polym.. 240, 116282 (2020) https://doi.org/10.1016/j.carbpol.2020.116282

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 65, 55-63 (1983) https://doi.org/10.1016/0022-1759(83)90303-4

Bakas P, Konidaris S, Liapis A, Gregoriou O, Tzanakaki D, Creatsas G. Role of gonadotropin-releasing hormone antagonist in the management of subfertile couples with intrauterine insemination and controlled ovarian stimulation. Fertil Steril., 95, 2024-2028 (2011) https://doi.org/10.1016/j.fertnstert.2011.01.167

Vikhe S, Kunkulol R. Microscopic Investigations and Pharmacognosy of Striga orobanchioides Benth. Pharmacogn J., 12(6), 1325-1331 (2020) https://doi.org/10.5530/pj.2020.12.182

Vikhe S, Fulsundar A, Vikhe R. Antidiabetic, Antihyperlipidemic and Protective Effect of Cupressus sempervirens L. Leaves Extract in Streptozotocin Induced Diabetic Rats. J Young Pharm., 16, 706-713 (2024) https://doi.org/10.5530/jyp.2024.16.90

Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod., 83, 770-803 (2020) https://doi.org/10.1021/acs.jnatprod.9b01285

Atanasov AG, Zotchev SB, Dirsch VM; International Natural Product Sciences Taskforce. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov., 20, 200-216 (2021) https://doi.org/10.1038/s41573-020-00114-z

Vikhe SR, Patil S, Ghogare R, Madkhali HA, Uzzaman Khan MM, Ansari MN, Banu SS, and Yaidikar L. Chloroform Extraction, Phytochemical Screening, GC-HRMS Analysis and Computational Investigation of Ehretia Laevis Roxb. as Potential MELK Inhibitor for the Treatment of Cancer, Chemical Methodologies, 9(8), 715-736 (2025) https://doi.org/10.48309/chemm.2025.515905.1927

Kabir SR, Islam MF, Alom MJ, Zubair MA, Absar N. Purification and characterization of lectin from Manilkara hexandra seeds. Protein Pept Lett., 28, 334-345 (2021) https://doi.org/10.2174/0929866527666201013142422

Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, et al. Association of the epithelial-mesenchymal transition (EMT) with cisplatin resistance. Int J Mol Sci., 21, 4002 (2020) https://doi.org/10.3390/ijms21114002

Vikhe S, Kunkulol R, Raut D. In Silico and In Vivo Studies of Decursin Isolated from the Ethanolic Extract of Feronia elephantum Correa (Rutaceae) Bark as a Potential Antidiabetic and Antihyperlipidemic Agent in STZ-induced Diabetic Rats. Lett Drug Des Discov., 20, 517-535 (2022) https://doi.org/10.2174/1570180819666220512101855

Vikhe S, Sukhadhane P, Vikhe R, Bornare SL, Dhavane SS. Antidiabetic Effects of Semecarpus anacardium Leaf Extracts in Streptozotocin-Induced Diabetes in Rats. J Appl Pharm Res., 12, 144-158 (2024) https://doi.org/10.69857/joapr.v12i6.736

Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients, 12, 457 (2020) https://doi.org/10.3390/nu12020457

Rauf A, Imran M, Khan IA, ur-Rehman M, Gilani SA, Mehmood Z, et al. Anticancer potential of quercetin: A comprehensive review. Phytother Res., 32, 2109-2130 (2018) https://doi.org/10.1002/ptr.6155

Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, et al. Quercetin, inflammation and immunity. Nutrients, 8, 167 (2016) https://doi.org/10.3390/nu8030167

Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci., 20, 3177 (2019) https://doi.org/10.3390/ijms20133177

Darband SG, Kaviani M, Yousefi B, Sadighparvar S, Pakdel FG, Attari JA. Quercetin: A functional dietary flavonoid with potential chemo-preventive properties in colorectal cancer. J Cell Physiol., 233, 6544-6560 (2018) https://doi.org/10.1002/jcp.26595

Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci., 146, 201-213 (2016) https://doi.org/10.1016/j.lfs.2016.01.017

Sharma S, Ali A, Ali J, Sahni JK, Baboota S. Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs, 22, 1063-1079 (2013) https://doi.org/10.1517/13543784.2013.805744

Sinha S, Sharma A, Reddy PH, Longvah T, Prasad NK. Polyphenol-rich foods and cancer prevention: A comprehensive review of clinical evidence for cancer prevention in the context of integrative medicine. J Ayurveda Integr Med., 13, 100418 (2022) https://doi.org/10.1016/j.jaim.2021.05.003

Published

2025-08-31

How to Cite

Sunayana R. Vikhe, Sarika Vikhe, & Vaibhav Bhamare. (2025). In vitro anticancer potential of Manilkara hexandra (Roxb.) leaf methanolic extracts via SRB and MTT assays against MCF-7 cell line. Journal of Applied Pharmaceutical Research, 13(4), 228-238. https://doi.org/10.69857/joapr.v13i4.1262

Issue

Section

Articles