Design and development of thermosensitive rectal in situ gel from Luffa acutangula fruits for the treatment of ulcerative colitis
DOI:
https://doi.org/10.69857/joapr.v12i5.761Keywords:
In situ gel, thermosensitive polymer, Luffa acutangula, poloxamer, mucoadhesiveAbstract
Background: Luffa acutangula has good anti-inflammatory and antioxidant activity. Ulcerative colitis has inflamed intestinal mucosal lining with frequent diarrhoea, mucosal, and bloody stools. The rectal administration provides high bioavailability, rapid absorption, and instant therapeutic effect. Conventional rectal formulations may be painful, while insertion and discomfort may also be experienced from the rectum leakage. Methodology: Luffa acutangula fruit extract was used for the preparation a novel rectal mucoadhesive in situ-gel by using thermosensitive polymers such as Poloxamer 407, Poloxamer 188. HPMC K4M and carbopol 940 are two mucoadhesive polymers that are used to boost the mucoadhesive force and gel strength. The response surface method design was used to optimize the formulation. The formulated in situ gel batches were analysed by gelation temperature, gel strength, gelling ability, gelling time, viscosity and in vitro drug release and mucoadhesive strength. Results and Discussion: The concentration of poloxamer 407 (15%) and poloxamer 188 (3%) was optimized by design expert. The optimized formulation F10 showed 36.35±0.890 gelation temperature and 94.66±0.57 % cumulative drug release. Drug release kinetics follows Higuchi release model and according to Korsemeyer Peppa's model value of n= 1.1114 indicates supercase -II transport. Gelation temperature of mucoadhesive in situ gel (F10HP2) was found in the range 36.45±0.102°C with 91.37±0.84 % cumulative drug release. Mucoadhesive in situ gel was tested in rat model of ulcerative colitis for 7 days. Conclusion: Preclinical study of optimized formulation shows that Luffa acutangula fruit extract can stop or prevent further progression of acetic acid induced ulcerative colitis in rat model.
Downloads
References
Aslam N, Lo SW, Sikafi R, Barnes T, Segal J, Smith PJ. A review of the therapeutic management of ulcerative colitis. Ther Adv Gastroenterol, 15, 1–21 (2022) http://dx.doi.org/10.1177/17562848221138160.
Abhirami NR, Laksmi VV, Deepitha AM. A review on prevalence of inflammatory bowel disease in India. J Drug Deliv Ther., 12(6), 219–23 (2022) http://dx.doi.org/10.22270/jddt.v12i6.5403.
Huang S, Zhang M, Li X, Pei J, Zhou Z, Lei P, et al. Formulation, characterization, and evaluation of curcumin-loaded ginger-derived nanovesicles for anti-colitis activity. J Pharm Anal., 101014, 1-44 (2024) https://doi.org/10.1016/j.jpha.2024.101014.
Iyengar P, Godoy-Brewer G, Maniyar I, White J, Maas L, Parian AM. Herbal medicines for the treatment of active ulcerative colitis: A systematic review and meta-analysis. Nutrients, 16(7), 1-36 (2024) http://dx.doi.org/10.3390/nu16070934.
Gupta M, Mishra V, Gulati M, Kapoor B, Kaur A, Gupta R. Natural compounds as safe therapeutic options for ulcerative colitis. Inflammopharmacology, 30(2), 397–434 (2022) http://dx.doi.org/10.1007/s10787-022-00931-1.
Zhao S, Zhang J, Qiu M, Hou Y, Li X, Zhong G, et al. Mucoadhesive and thermosensitive Bletilla striata polysaccharide/chitosan hydrogel loaded nanoparticles for rectal drug delivery in ulcerative colitis. Int J Biol Macromol., 254(1), 127-761 (2024) http://dx.doi.org/10.1016/j.ijbiomac.2023.127761.
Yasmin F, Najeeb H, Shaikh S, Hasanain M, Naeem U, Moeed A. Novel drug delivery systems for inflammatory bowel disease. World J Gastroenterol., 28(18), 1922–33 (2022) http://dx.doi.org/10.3748/wjg.v28.i18.1922.
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics. 12(9), 859 (2020) http://dx.doi.org/10.3390/pharmaceutics12090859.
Dubey P, Fatma Begum R, Chitra V, Mrinalini R, Gunasekaran H, Sumithra M. Formulation, standardization, and preclinical evaluation of polyherbal suspension against inflammatory bowel disease. J Nat Remedies., 22(3), 412–23 (2022) http://dx.doi.org/10.18311/jnr/2022/29781.
Khan B, Arbab A, Khan S, Fatima H, Bibi I, Chowdhry NP. Recent progress in thermosensitive hydrogels and their applications in drug delivery area. Med Comm-Biomaterials and Applications, 2(3), 1-21 (2023) http://dx.doi.org/10.1002/mba2.55.
Bialik M, Kuras M, Sobczak M, Oledzka E. Achievements in Thermosensitive gelling systems for rectal administration. Int J Mol Sci., 22(11), 5500 (2021) http://dx.doi.org/10.3390/ijms22115500.
Hua S. Physiological and pharmaceutical considerations for rectal drug formulations. Front Pharmacol. 10(1196), 1-16 (2019) http://dx.doi.org/10.3389/fphar.2019.01196.
Giuliano E, Paolino D, Cristiano MC, Fresta M, Cosco D. Rutin-loaded poloxamer 407-based hydrogels for in situ administration: Stability profiles and rheological properties. Nanomaterials, 10(6), 1069 (2020) http://dx.doi.org/10.3390/nano10061069.
Salem HF, Ali AA, Rabea YK, El-Ela FIA, Khallaf RA. Glycerosomal thermosensitive in situ gel of duloxetine HCl as a novel nanoplatform for rectal delivery: in vitro optimization and in vivo appraisal. Drug Deliv Transl Res, 12(12), 3083–103 (2022) http://dx.doi.org/10.1007/s13346-022-01172-z.
Huang C-H, Hu P-Y, Wu Q-Y, Xia M-Y, Zhang W-L, Lei Z-Q, et al. Preparation, in vitro and in vivo Evaluation of Thermosensitive in situ Gel Loaded with Ibuprofen-Solid Lipid Nanoparticles for Rectal Delivery. Drug Des Devel Ther., 16, 1407–31 (2022) http://dx.doi.org/10.2147/dddt.s350886.
Abdulaziz Arkin, Aliya Elham, Arfidin Anwar, Optimization and Evaluation of the Quercus infectoria Galls Thermosensitive In Situ Gel for Rectal Delivery. Evid Based Complement Alternat Med, 1-15 (2022) http://dx.doi.org/10.1155/2022/8451055.
Rajput S, Patel D, Rathi S, Patel B, Patel Y. Formulation and Evaluation of Rectal In situ Gel of Phenylephrine For Treatment of Hemorrhoids. Journal For Basic Sciences, 23(5), 790-802 (2023) http://dx.doi.org/10.37896/JBSV23.5/2155.
Shaik F, Rajasekaran. Formulation development and evaluation of carbopol-incorporated mucoadhesive thermoreversible gels of sucralfate for rectal drug delivery. Hacettepe University Journal of the Faculty of Pharmacy, 41(4), 234-242 (2021) http://dx.doi.org/10.52794/hujpharm.1012883.
Salman ZD, Alhamdany AT, Yousif NZ. An innovative mucoadhesive Thermosensitive in situ gelling liquid suppository of metoclopramide hydrocloride for treatment of nausea and vomiting associated with diseases. Indian J Pharm Sci., 82(4), 650-664 (2020) http://dx.doi.org/10.36468/pharmaceutical-sciences.691.
Chen L, Han X, Xu X, Zhang Q, Zeng Y, Su Q. Optimization and evaluation of the Thermosensitive in situ and adhesive gel for rectal delivery of budesonide. AAPS Pharm Sci Tech., 21(97), 1-12 (2020) http://dx.doi.org/10.1208/s12249-020-1631-5.
Vishnu Namboothiri Megha K, Vinitha Babu S, Madhavan Radhamany P. Screening of Phytoconstituents, HPTLC and FT-IR Analysis in Luffa Cylindrica (L.) M. Roem Fruits. International Journal of Pharmaceutical Sciences and Research. 11(8), 3944–52 (2020) http://dx.doi.org/10.13040/IJPSR.0975-8232.11(8).3944-52.
Yadav S, Jain N, Jain A. Phytochemical Screening and Antipyretic Activity of Luffa acutangula Extract. Indo Am. J. P. Sci. 9(7), 565-570 (2022) http://dx.doi.org/doi:10.4103/0253-7613.182539.
Bhatt A, Kumar A, Kumar A. A Review on Ethnomedicinal Uses and Biological activities of Luffa acutangular. Int. J. Pharm. Sci. Rev. Res., 66(2), 98-102 (2021) http://dx.doi.org/doi:10.47583/ijpsrr.2021.v66i02.017.
Nallappan D, Fauzi AN, Krishna BS, Kumar BP, Reddy AVK, Syed T, et al. Green biosynthesis, antioxidant, antibacterial, and anticancer activities of silver nanoparticles of Luffa acutangula leaf extract. Biomed Res Int., 2021, 1-28 (2021) http://dx.doi.org/10.1155/2021/5125681.
Ananthalakshmi R, Rajarathinam SRX, Sadiq AM, Poongothai A. Phytochemical profiling of Luffa acutangula peel extract using GCMS Study. Res J Pharm Technol., 12(12), 6071 (2019) http://dx.doi.org/10.5958/0974-360x.2019.01054.0
Verma B, Dwivedi S, Raghuwanshi S, Vyas N. Wound healing activity of ethanolic extract of Luffa acutangula (fruit). International Journal of Pharmaceutical Sciences and Research, 10(10), 4700–4 (2019) https://doi.org/doi:10.13040/IJPSR.0975-8232.10(10).4700-04.
Al-Joufi F, Elmowafy M, Alruwaili NK, Alharbi KS, Shalaby K, Alsharari SD. Mucoadhesive in situ rectal gel loaded with rifampicin: Strategy to improve bioavailability and alleviate liver toxicity. Pharmaceutics, 13(3), 336 (2021) http://dx.doi.org/10.3390/pharmaceutics13030336.
Kassab HJ, Alkufi HK, Hussein LS. Use of factorial design in formulation and evaluation of intrarectal in situ gel of sumatriptan. J Adv Pharm Technol Res., 14, 119-24 (2023) http://dx.doi.org/10.4103/japtr.japtr_603_22.
Xue P, Wang L, Xu J. Temperature‐sensitive hydrogel for rectal perfusion improved the therapeutic effect of Kangfuxin liquid on DSS‐induced ulcerative colitis mice: the inflammation alleviation and the colonic mucosal barriers repair. Int J Pharm., 589(119), 846 (2020) https://doi.org/10.1016/j.ijpharm.2020.119846.
Upadhaya V, Tiwari N. A Review: in-situ Gel Drug Delivery System. Journal of Emerging Technologies and Innovative Research, 10(2), 714–24 (2023) https://doi.org/10.18231/j.ijcaap.2024.025.
Raheema DA, Kassab HJ. Preparation and in-vitro evaluation of secnidazole as periodontal in-situ gel for treatment of periodontal disease. Iraqi J Pharm Sci., 31(2), 50–61 (2022) http://dx.doi.org/10.31351/vol31iss2pp50-61.
Lei X, Zhang G, Yang T, Wu Y, Peng Y, Wang T, Li D, Liu Q, Wang C, Zhang G. Preparation and in vitro and in vivo evaluation of rectal in situ gel of meloxicam hydroxypropyl-β-cyclodextrin inclusion complex. Molecules, 28(10), 4099 (2023) http://dx.doi.org/10.3390/molecules28104099.
Huang CH, Hu PY, Wu QY, Xia MY. Drug Design, Development and Therapy Preparation, in vitro and in vivo Evaluation of Thermosensitive in situ Gel Loaded with Ibuprofen-Solid Lipid Nanoparticles for Rectal Delivery. Drug Des Devel Ther., 16, 1407–31 (2022)
http://dx.doi.org/10.2147/dddt.s350886.
Deepa S, Kumar KS, Velmurugan D. Formulation of a thermo-sensitive hydro-gel for ulcerative colitis treatment. Bioinformation., 18(10), 925-937 (2022) http://dx.doi.org/10.6026/97320630018925.
Tenci M, Rossi S, Giannino V, Vigani B. An In Situ Gelling System for the Local Treatment of Inflammatory Bowel Disease (IBD). The Loading of Maqui (Aristotelia chilensis) Berry Extract as an Antioxidant and Anti-Inflammatory Agent. Pharmaceutics., 11(611), 1-18 (2019) http://dx.doi.org/10.3390/pharmaceutics11110611.
Wu M, Ding H, Tang X, Chen J, Zhang M, Yang Z, Du Q, Wang J. Efficiency of a novel thermosensitive enema in situ hydrogel carrying Periplaneta americana extracts for the treatment of ulcerative colitis. Front Pharmacol., 14, 1111267 (2023) https://doi.org/10.3389/fphar.2023.1111267.
Rehman IU, Saleem M, Raza SA, Bashir S, Muhammad T, Asghar S, Qamar MU, Shah TA, Bin Jardan YA, Mekonnen AB and Bourhia M. Anti-ulcerative colitis effects of chemically characterized extracts from Calliandra haematocephala in acetic acidinduced ulcerative colitis. Front. Chem., 12, 1-17 (2024) https://doi.org/10.3389/fchem.2024.1291230.
Iria Seoane-Viano, Noemi Gomez-Lado, Hector Lazare-Iglesias. 3D Printed Tacrolimus Rectal Formulations Ameliorate Colitis in an Experimental Animal Model of Inflammatory Bowel Disease. Biomedicines., 8(563), 1-17 (2020) http://dx.doi.org/10.3390/biomedicines8120563.
Lei X, Zhang G, Yang T, Wu Y, Peng Y. Preparation and In Vitro and In Vivo Evaluation of Rectal In Situ Gel of Meloxicam Hydroxypropyl-β-cyclodextrin Inclusion Complex. Molecules 28, 4099 (2023) https://doi.org/10.3390/molecules28104099.
Ranch KM, Maulvi FA, Koli AR. Tailored Doxycycline Hyclate Loaded In Situ Gel for the Treatment of Periodontitis: Optimization, In Vitro Characterization, and Antimicrobial Studies. AAPS PharmSciTech., 22, 77 (2021) http://dx.doi.org/10.1208/s12249-021-01950-x.
Garg A, Agrawal R, Chauhan CS, Deshmukh R. In-situ gel: A smart carrier for drug delivery. Int J Pharm, 652, 123819 (2024) http://dx.doi.org/10.1016/j.ijpharm.2024.
Obayes KK, Thomas LM. Development and Characterization of Hyaluronic Acid-Incorporated Thermosensitive Nasal in situ Gel of Meclizine Hydrochloride. Al-Rafidain J Med Sci., 6(1), 97-104 (2024) https://doi.org/10.54133/ajms.v6i1.499.
Verma R, Rathore KS, Saurabh SS. A review: In-situ gel drug delivery system. IP Int J Compr Adv Pharmacol 9(3), 177–82 (2024) http://dx.doi.org/10.18231/j.ijcaap.2024.025.
Rathi R, Sanshita, Kumar A, Vishvakarma V, Huanbutta K, Singh I. Advancements in rectal drug delivery systems: Clinical trials, and patents perspective. Pharmaceutics, 14(10), 2210 (2022) http://dx.doi.org/10.3390/pharmaceutics14102210.
Firoz F, Yousef T, Asser Y, Thaer RM, Sammour RMF. Thermo-activated in situ rectal gel preparation for Ibuprofen using eutectic mixture. Eur J Pharm Sci., 200(106843), 1-12 (2024) http://dx.doi.org/10.1016/j.ejps.2024.106843.
Firoz S, Padmini K, Padmasree K, Sravani N, Hemalatha A, Vennelarani Y. F formulation development and evaluation of carbopol-incorporated thermoreversible gels of pseudoephedrine for rectal drug delivery. Asian J Pharm Clin Res., 12(5), 231–5 (2019) http://dx.doi.org/10.22159/ajpcr.2019.v12i5.32518.
Firoz S, Rajasekaran. A survey on mucoadhesive thermoreversible drug delivery system with special emphasis on recto-anal region for the treatment of internal hemorrhoids. Res J Pharm Technol., 14(5), 2878–86 (2021) http://dx.doi.org/10.52711/0974-360x.2021.00506.
Ansari MN, Rehman NU, Karim A, Soliman GA, Ganaie MA, Raish M. Role of oxidative stress and inflammatory cytokines (TNF-α and IL-6) in acetic acid-induced ulcerative colitis in rats: Ameliorated by otostegia fruticosa. Life, 11, 1-17 (2021) http://dx.doi.org/10.3390/life11030195.
Owusu G, Obiri DD, Ainooson GK, Osafo N, Antwi AO, Duduyemi BM. Acetic acid-induced ulcerative colitis in Sprague Dawley rats is suppressed by hydroethanolic extract of Cordia vignei leaves through reduced serum levels of TNF-α and IL-6. Int J Chronic Dis., 8785497 (2020) http://dx.doi.org/10.1155/2020/8785497.
Bahrami G, Malekshahi H, Miraghaee S, Madani H, Babaei A, Mohammadi B. Protective and therapeutic effects of aloe Vera gel on ulcerative colitis induced by acetic acid in rats. Clin Nutr Res., 9(3), 223 (2020) http://dx.doi.org/10.7762/cnr.2020.9.3.223.
Adakudugu EA, Ameyaw EO, Obese E, Biney RP, Henneh IT, Aidoo DB. Protective effect of bergapten in acetic acid-induced colitis in rats. Heliyon, 6(8), 4710 (2020) http://dx.doi.org/10.1016/j.heliyon.2020.e04710.
Otu-Boakye SA, Yeboah KO, Boakye-Gyasi E, Oppong-Kyekyeku J, Okyere PD, Osafo N. Acetic acid-induced colitis modulating potential of total crude alkaloidal extract of Picralima nitida seeds in rats. Immun Inflamm Dis., 11(5), (2023) http://dx.doi.org/10.1002/iid3.855.
Ye M, Joosse ME, Liu L, Sun Y, Dong Y, Cai C. Deletion of IL-6 exacerbates colitis and induces systemic inflammation in IL-10-deficient mice. J Crohns Colitis., 14(6), 831–40 (2020) http://dx.doi.org/10.1093/ecco-jcc/jjz176.
Shahini A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal., 17(1), 55–74 (2023) http://dx.doi.org/10.1007/s12079-022-00695-x.
Ozawa K, Mori D, Hatanaka A, Sawano T, Nakatani J, Ikeya Y. Comparison of the anti-colitis activities of Qing Dai/Indigo Naturalis constituents in mice. J Pharmacol Sci., 142(4), 148–56 (2020) https://doi.org/10.1016/j.jphs.2020.01.003.
Alhendi A, Naser SA. The dual role of interleukin-6 in Crohn’s disease pathophysiology. Front Immunol., 14, 1295230 (2023) http://dx.doi.org/10.3389/fimmu.2023.1295230.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Swati P. Barangule, Avish D. Maru
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.