Novel approaches in development of cell penetrating peptides

Authors

  • Vatsal R. Shah Torrent Pharmaceuticals Ltd., Gandhinagar - Ahmedabad Road, Near Kanoria Hospital, GIDC Bhat, Bhat, Gandhinagar, Gujarat-382428
  • Yamini D. Shah L. M. College of Pharmacy, Opposite Gujarat University, Navrangpura, Ahmedabad, Gujarat-380009
  • Mansi N. Athalye L. M. College of Pharmacy, Opposite Gujarat University, Navrangpura, Ahmedabad, Gujarat-380009

DOI:

https://doi.org/10.18231/JOAPR.2021.9.1.08.24

Keywords:

Cell penetrating peptides, Carrier drugs, Endosomal escape, Intracellular drug delivery

Abstract

Therapeutic cargos which are impermeable to the cell can be delivered by cell penetrating peptides (CPPs). CPP-cargo complexes accumulate by endocytosis inside the cells but they fail to reach the cytosolic space properly as they are often trapped in the endocytic organelles. Here the CPP mediated endosomal escape and some strategies used to increase endosomal escape of CPP-cargo conjugates are discussed with evidence. Potential benefits can be obtained by peptides such as reduction in side effects, biocompatibility, easier synthesis and can be obtained at lower administered doses. The particular peptide known as cell penetrating peptides are able to translocate themselves across membrane with the carrier drugs with different mechanisms.  This is of prime importance in drug delivery systems as they have capability to cross physiological membranes. This review describes various mechanisms for effective drug delivery and associated challenges

Downloads

Download data is not yet available.

References

Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature, 422, 37–44 (2003).

Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell. Biol., 10, 4239–42 (1990).

Luo D, Mark, W S. Synthetic DNA delivery systems. Nat. Biotechnol., 18, 33–7 (2000).

Yacoub MD. The κ-μ distribution and the η-μ distribution. IEEE Antennas Propag. Mag., 49, 68–81 (2007).

Järver P, Langel Ü. The use of cell-penetrating peptides as a tool for gene regulation. Drug Discov. Today, 9, 395–402 (2004).

Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. J. Biol. Chem., 271, 18188–93 (1996).

Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem., 276, 5836–40 (2001).

Oren Z, Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers, 47, 451–63 (1998).

Matsuzaki K, Yoneyama S, Miyajima K. Pore formation and translocation of melittin. Biophys. J., 73, 831–8 (1997).

Thorén PEG, Persson D, Isakson P, Goksör M, Önfelt A, Nordén B. Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. Biochem. Biophys. Res. Commun., 307, 100–7 (2003).

Lundberg M, Wikström S, Johansson M. Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther., 8, 143–50 (2003).

Ferrari A, Pellegrini V, Arcangeli C, Fittipaldi A, Giacca M, Beltram F. Caveolae-mediated internalization of extracellular HIV-1 Tat fusion proteins visualized in real time. Mol. Ther., 8, 284–94 (2003).

Console S, Marty C, García-Echeverría C, Schwendener R, Ballmer-Hofer K. Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem., 278, 35109–14 (2003).

Sandgren S, Wittrup A, Cheng F, Jönsson M, Eklund E, Busch S, Belting M. The Human Antimicrobial Peptide LL-37 Transfers Extracellular DNA Plasmid to the Nuclear Compartment of Mammalian Cells via Lipid Rafts and Proteoglycan-dependent Endocytosis. J. Biol. Chem., 279, 17951–6 (2004).

Drin G, Cottin S, Blanc E, Rees AR, Temsamani J. Studies on the internalization mechanism of cationic cell-penetrating peptides. J. Biol. Chem., 278, 31192–201 (2003).

Wadia JS, Stan R V., Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med., 10, 310–5 (2004).

Holm T, Langel Ü. Cell-Penetrating Peptides : Mechanisms and Applications. Curr. Pharm. Des., 11, 3597–611 (2005).

Milletti F. Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov. Today, 17, 850–60 (2012).

Heitz F, Morris MC, Divita G. THEMED SECTION : VECTOR DESIGN AND DRUG DELIVERY REVIEW Twenty years of cell-penetrating peptides : from molecular mechanisms to therapeutics. Br. J. Pharmacol., 157, 195–206 (2009).

Zatsepin TS, Turner JJ, Oretskaya TS, Gait MJ. Conjugates of Oligonucleotides and Analogues with Cell Penetrating Peptides as Gene Silencing Agents. Curr. Pharm. Des., 11, 3639–54 (2005).

Pujals S, Fernández-carneado J, López-iglesias C, Kogan MJ, Giralt E. Mechanistic aspects of CPP-mediated intracellular drug delivery : Relevance of CPP self-assembly. Biochim. Biophys. Acta, 1758, 264–79 (2006).

Murriel CL, Dowdy SF. Influence of protein transduction domains on intracellular delivery of macromolecules. Expert Opin. Drug Deliv., 3, 739–46 (2006).

Kim H, Kitamatsu M, Ohtsuki T. Bioorganic & Medicinal Chemistry Letters Enhanced intracellular peptide delivery by multivalent cell-penetrating peptide with bioreducible linkage. Bioorg. Med. Chem. Lett., 28, 378–81 (2018).

Vives E. Cellular utake of the Tat peptide : an endocytosis mechanism following ionic interactions AN IMPROVED DELIVERY UPON. J. Mol. Recognit., 16, 265–71 (2003).

Hew K, Dahlroth S, Pan LX, Cornvik T. VP22 core domain from Herpes simplex virus 1 reveals a surprising structural conservation in both the Alpha - and Gammaherpesvirinae subfamilies. J. Gen. Virol., 96, 1436–45 (2015).

Yu X, Li T, Xia Y, Lei JUN, Wang YAN, Zhang L. Herpes simplex virus type 1 VP22-mediated intercellular delivery of PTEN increases the antitumor activity of PTEN in esophageal squamous cell carcinoma cells in vitro and in vivo. Oncol. Rep., 35, 3034–40 (2016).

Splith K, Neundorf I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur. Biophys. J., 40, 387–97 (2011).

Plaza JGR, Diener C, Gonzalez ZD, Teresa M, Ortiz L, Blake IO, Pantoja O, Chem JB. Microbiology : Cell Penetrating Peptides and Cationic Antibacterial Peptides : two sides of the same coin Rudolf Volkmer , Edda Klipp , Andreas Supplemental material : J. Biol. Chem., 0–23 (2014).

Nakase I, Hirose H, Tanaka G, Tadokoro A, Kobayashi S, Takeuchi T, Futaki S. Cell-surface Accumulation of Flock House Virus-derived Peptide Leads to Efficient Internalization via Macropinocytosis. Mol. Ther., 17, 1868–76 (2009).

Peptides CC, Cascales L, Henriques T, Kerr MC, Huang Y, Sweet MJ, Daly NL, Craik DJ. Identification and Characterization of a New Family of. J. Biol. Chem., 286, 36932–43 (2011).

Copolovici DM, Langel K, Eriste E, Langel Ü. Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano, 8, 1972–94 (2014).

Macewan SR, Chilkoti A. Harnessing the power of cell-penetrating peptides : activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, (2012).

Bechara C, Sagan S. Cell-penetrating peptides : 20 years later , where do we stand ? FEBS Lett., (2013).

Wagstaff KM, Jans DA. Protein Transduction: Cell Penetrating Peptides and Their Therapeutic Applications. Front. Med. Chem. (Volume 5), 98–126 (2012).

Yang H, Liu S, Cai H, Wan L, Li S, Li Y, Cheng J, Lu X. Chondroitin sulfate as a molecular portal that preferentially mediates the apoptotic killing of tumor cells by penetratin-directed mitochondria-disrupting peptides. J. Biol. Chem., 285, 25666–76 (2010).

Letoha T, Keller-Pintér A, Kusz E, Kolozsi C, Bozsó Z, Tóth G, Vizler C, Oláh Z, Szilák L. Cell-penetrating peptide exploited syndecans. Biochim. Biophys. Acta - Biomembr., 1798, 2258–65 (2010).

Poon GMK, Gariépy J. Cell-surface proteoglycans as molecular portals for cationic peptide and polymer entry into cells. Biochem. Soc. Trans., 35, 788–93 (2007).

Persson D, Thorén PEG, Nordén B. Penetratin-induced aggregation and subsequent dissociation of negatively charged phospholipid vesicles. FEBS Lett., 505, 307–12 (2001).

Tiriveedhi V, Butko P. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Biochemistry, 46, 3888–95 (2007).

Walrant A, Correia I, Jiao C, Lequin O, Bent EH, Goasdoué N, Lacombe C, Chassaing G, Sagan S, Alves ID. Biochimica et Biophysica Acta Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. BBA - Biomembr., 1808, 382–93 (2011).

Alves ID, Goasdoué N, Correia I, Aubry S, Galanth C, Sagan S, Lavielle S, Chassaing G. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Biochim. Biophys. Acta, 1780, 948–59 (2008).

Eiríksdóttir E, Konate K, Langel Ü, Divita G, Deshayes S. Biochimica et Biophysica Acta Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. BBA - Biomembr., 1798, 1119–28 (2010).

Lundin P, Johansson H, Guterstam P, Holm T, Hansen M, Langel Ü, Andaloussi SEL. Distinct Uptake Routes of Cell-Penetrating Peptide Conjugates. Bioconjug. Chem., 19, 2535–42 (2008).

Deshayes S, Decaffmeyer M, Brasseur R, Thomas A. Structural polymorphism of two CPP : An important parameter of activity. Biochim. Biophys. Acta, 1778, 1197–205 (2008).

Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB. Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res., 56, 318–25 (2000).

Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB. The design , synthesis , and evaluation of molecules that enable or enhance cellular uptake : Peptoid molecular transporters. Proc. Natl. Acad. Sci. U. S. A., 97, 13003–8 (2000).

Nakase I, Takeuchi T, Tanaka G, Futaki S. Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides ☆. Adv. Drug Deliv. Rev., 60, 598–607 (2008).

Rothbard JB, Jessop TC, Lewis RS, Murray BA, Wender PA. Role of Membrane Potential and Hydrogen Bonding in the Mechanism of Translocation of Guanidinium-Rich Peptides into Cells. J. Am. Chem. Soc., 126, 9506–7 (2004).

Takayama K, Nakase I, Michiue H, Takeuchi T, Tomizawa K. Enhanced intracellular delivery using arginine-rich peptides by the addition of penetration accelerating sequences ( Pas ). J. Control. Release, 138, 128–33 (2009).

Elmquist A, Hansen M, Langel Ü. Structure – activity relationship study of the cell-penetrating peptide p VEC. Biochim. Biophys. Acta, 1758, 721–9 (2006).

Carrigan CN, Imperiali B. The engineering of membrane-permeable peptides. Anal. Biochem., 341, 290–8 (2005).

Mishra A, Hwee G, Schmidt NW, Sun VZ, Rodriguez AR, Tong R, Tang L. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc. Natl. Acad. Sci. U. S. A., 108, 16883–16888 (2011).

Magzoub M, Goran LE, Graslund A. Comparison of the interaction , positioning , structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles. Biophys. Chem., 103, 271–88 (2003).

Walrant A, Vogel A, Correia I, Lequin O, Olausson BES, Desbat B, Sagan S, Alves ID. Biochimica et Biophysica Acta Membrane interactions of two arginine-rich peptides with different cell internalization capacities. BBA - Biomembr., 1818, 1755–63 (2012).

Edenhofer F. Protein Transduction Revisited: Novel Insights Into the Mechanism Underlying Intracellular Delivery of Proteins. Curr. Pharm. Des., 14, 3628–36 (2008).

Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic, 8, 848–66 (2007).

Gump JM, Dowdy SF. TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol. Med., 13, 443–8 (2007).

Li H, Tsui TY, Ma W. Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. Int. J. Mol. Sci., 16, 19518–36 (2015).

Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. U. S. A., 91, 664–8 (1994).

Bitler B, Schroeder J. Anti-Cancer Therapies that Utilize Cell Penetrating Peptides. Recent Pat. Anticancer. Drug Discov., 5, 99–108 (2010).

Anderson RGW, Kamen BA, Rothberg KG, Lacey SW. Potocytosis: Sequestration and transport of small molecules by caveolae. Science (80-. )., 255, 410–1 (1992).

Lundberg P, Langel Ü. A brief introduction to cell-penetrating peptides. J. Mol. Recognit., 16, 227–33 (2003).

Guidotti G, Brambilla L, Rossi D. Cell-Penetrating Peptides : From Basic Research to Clinics. Trends Pharmacol. Sci., 38, 406–24 (2017).

Reissmann S. Cell penetration: Scope and limitations by the application of cell-penetrating peptides. J. Pept. Sci., 20, 760–84 (2014).

Böhmová E, Machová D, Pechar M, Pola R, Venclíková K, Janoušková O, Etrych T. Cell-penetrating peptides: A useful tool for the delivery of various cargoes into cells. Physiol. Res., 67, s267–79 (2018).

Brogden KA. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 3, 238–50 (2005).

Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry, 35, 11361–8 (1996).

Gräslund A, Madani F, Lindberg S, Langel Ü, Futaki S. Mechanisms of cellular uptake of cell-penetrating peptides. J. Biophys., 2011, (2011).

Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta - Biomembr., 1462, 55–70 (1999).

Islam MZ, Sharmin S, Moniruzzaman M, Yamazaki M. Elementary processes for the entry of cell-penetrating peptides into lipid bilayer vesicles and bacterial cells. Appl. Microbiol. Biotechnol., 102, 3879–92 (2018).

Angeles-Boza AM, Erazo-Oliveras A, Lee YJ, Pellois JP. Generation of endosomolytic reagents by branching of cell-penetrating peptides: Tools for the delivery of bioactive compounds to live cells in cis or trans. Bioconjug. Chem., 21, 2164–7 (2010).

Kawamura KS, Su R-C, Nguyen LT, Elford AR, Ohashi PS, Gariépy J. In Vivo Generation of Cytotoxic T Cells from Epitopes Displayed on Peptide-Based Delivery Vehicles. J. Immunol., 168, 5709–15 (2002).

Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem. Rev., 109, 3141–57 (2009).

Pantos A, Tsiourvas D, Nounesis G, Paleos CM. Interaction of functional dendrimers with multilamellar liposomes: Design of a model system for studying drug delivery. Langmuir, 21, 7483–90 (2005).

Kang H, DeLong R, Fisher MH, Juliano RL. Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm. Res., 22, 2099–106 (2005).

Kawamura KS, Sung M, Bolewska-Pedyczak E, Gariépy J. Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells. Biochemistry, 45, 1116–27 (2006).

Soo-Jin L, Yoon SH, Doh KO. Enhancement of gene delivery using novel homodimeric tat peptide formed by disulfide bond. J. Microbiol. Biotechnol., 21, 802–7 (2011).

Rudolph C, Schillinger U, Ortiz A, Tabatt K, Plank C, Müller RH, Rosenecker J. Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm. Res., 21, 1662–9 (2004).

Aimoto S. Synthesis of proteins by native chemical ligation. Tanpakushitsu Kakusan Koso., 52, 1804–5 (2007).

Singh D, Bisland SK, Kawamura K, Gariépy J. Peptide-based intracellular shuttle able to facilitate gene transfer in mammalian cells. Bioconjug. Chem., 10, 745–54 (1999).

Singh D, Kiarash R, Kawamura K, LaCasse EC, Gariépy J. Penetration and intracellular routing of nucleus-directed peptide-based shuttles (loligomers) in eukaryotic cells. Biochemistry, 37, 5798–809 (1998).

Sheldon K, Liu D, Ferguson J, Gariépy J. Loligomers: Design of de novo peptide-based intracellular vehicles. Proc. Natl. Acad. Sci. U. S. A., 92, 2056–60 (1995).

Kim J Bin, Choi JS, Nam K, Lee M, Park JS, Lee JK. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J. Control. Release, 114, 110–7 (2006).

Hassane FS, Ivanova GD, Bolewska-Pedyczak E, Abes R, Arzumanov AA, Gait MJ, Lebleu B, Gariépy J. A peptide-based dendrimer that enhances the splice-redirecting activity of PNA conjugates in cells. Bioconjug. Chem., 20, 1523–30 (2009).

Appelbaum JS, Larochelle JR, Smith BA, Balkin DM, Holub JM, Schepartz A. Arginine topology controls escape of minimally cationic proteins from early endosomes to the cytoplasm. Chem. Biol., 19, 819–30 (2012).

Ma Y, Gong C, Ma Y, Fan F, Luo M, Yang F, Zhang YH. Direct cytosolic delivery of cargoes in vivo by a chimera consisting of D- and L-arginine residues. J. Control. Release, 162, 286–94 (2012).

Holm, T., Andaloussi, EL., Langel Ü. Comparison of CPP Uptake Methods. Ülo Langel (ed.), Cell-Penetrating Pept. Methods Protoc. Methods Mol. Biol., 683, 21–9 (2011).

Burlina F, Sagan S, Bolbach G, Chassaing G. Quantification of the cellular uptake of cell-penetrating peptides by MALDI-TOF mass spectrometry. Angew. Chemie - Int. Ed., 44, 4244–7 (2005).

Burlina F, Sagan S, Bolbach G, Chassaing G. A direct approach to quantification of the cellular uptake of cell-penetrating peptides using MALDI-TOF mass spectrometry. Nat. Protoc., 1, 200–5 (2006).

Hirose H, Takeuchi T, Osakada H, Pujals S, Katayama S, Nakase I, Kobayashi S, Haraguchi T, Futaki S. Transient focal membrane deformation induced by arginine-rich peptides leads to their direct penetration into cells. Mol. Ther., 20, 984–93 (2012).

Palm-Apergi C, Lorents A, Padari K, Pooga M, Hällbrink M. The membrane repair response masks membrane disturbances caused by cell-penetrating peptide uptake. FASEB J., 23, 214–23 (2009).

Ye J, Fox SA, Cudic M, Rezler EM, Lauer JL, Fields GB, Terentis AC. Determination of penetratin secondary structure in live cells with Raman microscopy. J. Am. Chem. Soc., 132, 980–8 (2010).

Ziegler A, Seelig J. High affinity of the cell-penetrating peptide HIV-1 Tat-PTD for DNA. Biochemistry, 46, 8138–45 (2007).

Dietz G. Cell-Penetrating Peptide Technology to Deliver Chaperones and Associated Factors in Diseases and Basic Research. Curr. Pharm. Biotechnol., 11, 167–74 (2010).

Gaynor JW, Cosstick R. Therapeutic Oligonucleotides, ch 2: Diverse Dinucleotides Containing 3′-S-Phosphorothiolate Linkages. Methods Mol. Biol., 764, 17–30 (2011).

Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett., 587, 1693–702 (2013).

Ponnappan N, Budagavi DP, Chugh A. CyLoP-1: Membrane-active peptide with cell-penetrating and antimicrobial properties. Biochim. Biophys. Acta - Biomembr., 1859, 167–76 (2017).

Lindsay MA. Peptide-mediated cell delivery: Application in protein target validation. Curr. Opin. Pharmacol., 2, 587–94 (2002).

Suk Choi Y, Yeon Lee J, Sook Suh J, Jin Lee S, C. Yang V, Pyoung Chung C, Jeong Park Y. Cell Penetrating Peptides for Tumor Targeting. Curr. Pharm. Biotechnol., 12, 1166–82 (2011).

Tseng YL, Liu JJ, Hong RL. Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and Tat: A kinetic and efficacy study. Mol. Pharmacol., 62, 864–72 (2002).

Torchilin VP, Rammohan R, Weissig V, Levchenko TS. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci., 98, 8786–91 (2001).

Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D’Souza GGM. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc. Natl. Acad. Sci. U. S. A., 100, 1972–7 (2003).

Polyakov V, Sharma V, Dahlheimer JL, Pica CM, Luker GD, Piwnica-Worms D. Novel Tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy. Bioconjug. Chem., 11, 762–71 (2000).

Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol., 18, 410–4 (2000).

Bhorade R, Weissleder R, Nakakoshi T, Moore A, Tung CH. Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. Bioconjug. Chem., 11, 301–5 (2000).

Trabulo S, Cardoso AL, Mano M, de Lima MCP. Cell-penetrating peptides-mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals, 3, 961–93 (2010).

Kim WJ, Christensen L V., Jo S, Yockman JW, Jeong JH, Kim YH, Kim SW. Cholesteryl Oligoarginine Delivering Vascular Endothelial Growth Factor siRNA Effectively Inhibits Tumor Growth in Colon Adenocarcinoma. Mol. Ther., 14, 343–50 (2006).

Crombez L, Divita G. A non-covalent peptide-based strategy for siRNA delivery. Methods Mol. Biol., 683, 349–60 (2011).

Zeineddine D, Papadimou E, Chebli K, Gineste M, Liu J, Grey C, Thurig S, Behfar A, Wallace VAA, Skerjanc IS, Pucéat M. Oct-3/4 Dose Dependently Regulates Specification of Embryonic Stem Cells toward a Cardiac Lineage and Early Heart Development. Dev. Cell, 11, 535–46 (2006).

Nguyen QN, Chavli R V., Marques JT, Conrad PG, Wang D, He W, Belisle BE, Zhang A, Pastor LM, Witney FR, Morris M, Heitz F, Divita G, Williams BRG, McMaster GK. Light controllable siRNAs regulate gene suppression and phenotypes in cells. Biochim. Biophys. Acta - Biomembr., 1758, 394–403 (2006).

Glover DJ, Lipps HJ, Jans DA. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet., 6, 299–310 (2005).

Kwon YM, Li Y, Naik S, Liang JF, Huang Y, Park YJ, Yang VC. The ATTEMPTS delivery systems for macromolecular drugs. Expert Opin. Drug Deliv., 5, 1255–66 (2008).

Koch AM, Reynolds F, Merkle HP, Weissleder R, Josephson L. Transport of surface-modified nanoparticles through cell monolayers. ChemBioChem, 6, 337–45 (2005).

Munyendo WLL, Lv H, Benza-Ingoula H, Baraza LD, Zhou J. Cell penetrating peptides in the delivery of biopharmaceuticals. Biomolecules, 2, 187–202 (2012).

Olson ES, Jiang T, Aguilera TA, Nguyen QT, Ellies LG, Scadeng M, Tsien RY. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc. Natl. Acad. Sci. U. S. A., 107, 4311–6 (2010).

Nguyen QT, Olson ES, Aguilera TA, Jiang T, Scadeng M, Ellies LG, Tsien RY. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc. Natl. Acad. Sci. U. S. A., 107, 4317–22 (2010).

Lei Y, Tang H, Yao L, Yu R, Feng M, Zou B. Applications of mesenchymal stem cells labeled with tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjug. Chem., 19, 421–7 (2008).

Ruan G, Agrawal A, Marcus AI, Nie S. Imaging and tracking of Tat peptide-conjugated quantum dots in living cells: New insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J. Am. Chem. Soc., 129, 14759–66 (2007).

Zahid M, Robbins PD. Cell-type specific penetrating peptides: Therapeutic promises and challenges. Molecules, 20, 13055–70 (2015).

Pooga, M., Somets, U., Rezaei, K., Kahl, U. et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol., 16, 857–61 (1998).

Morris MC, Vidal P, Chaloin L, Heitz F, Divita G. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res., 25, 2730–6 (1997).

Wyman TB, Nicol F, Zelphati O, Scaria P V., Plank C, Szoka FC. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 36, 3008–17 (1997).

Gratton JP, Yu J, Griffith JW, Babbitt RW, Scotland RS, Hickey R, Giordano FJ, Sessa WC. Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat. Med., 9, 357–62 (2003).

Kurreck J. Antisense technologies: Improvement through novel chemical modifications. Eur. J. Biochem., 270, 1628–44 (2003).

Ito E, Sweterlitsch LA, Bui-Vinh Tran P, Rauscher FJ, Narayanan R. Inhibition of PC-12 cell differentiation by the immediate early gene fra-1. Oncogene, 5, 1755–60 (1990).

Morris MC, Chaloin L, Heitz F, Divita G. Translocating peptides and proteins and their use for gene delivery. Curr. Opin. Biotechnol., 11, 461–6 (2000).

Tasciotti E, Zoppè M, Giacca M. Transcellular transfer of active HSV-1 thymidine kinase mediated by an 11-amino-acid peptide from HIV-1 Tat. Cancer Gene Ther., 10, 64–74 (2003).

Simpson CL, Patel DM, Green KJ. Deconstructing the skin: Cytoarchitectural determinants of epidermal morphogenesis. Nat. Rev. Mol. Cell Biol., 12, 565–80 (2011).

Madison KC. Barrier Function of the Skin. J. Invest. Dermatol., 121, 231–41 (2003).

Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat. Med., 6, 1253–7 (2000).

Hou YW, Chan MH, Hsu HR, Liu BR, Chen CP, Chen HH, Lee HJ. Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides. Exp. Dermatol., 16, 999–1006 (2007).

Partidos CD, Beignon AS, Mawas F, Belliard G, Briand JP, Muller S. Immunity under the skin: Potential application for topical delivery of vaccines. Vaccine, 21, 776–80 (2003).

Deshayes S, Konate K, Aldrian G, Crombez L, Heitz F, Divita G. Structural polymorphism of non-covalent peptide-based delivery systems: Highway to cellular uptake. Biochim. Biophys. Acta - Biomembr., 1798, 2304–14 (2010).

Tan XX, Actor JK, Chen Y. Peptide nucleic acid antisense oligomer as a therapeutic strategy against bacterial infection: Proof of principle using mouse intraperitoneal infection. Antimicrob. Agents Chemother., 49, 3203–7 (2005).

Hegedüs R, Manea M, Orbán E, Szabó I, Kiss É, Sipos É, Halmos G, Mez G. Enhanced cellular uptake and in vitro antitumor activity of short-chain fatty acid acylated daunorubicin-GnRH-III bioconjugates. Eur. J. Med. Chem., 56, 155–65 (2012).

Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH, Wender PA. Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc. Natl. Acad. Sci. U. S. A., 105, 12128–33 (2008).

Aroui S, Mili D, Brahim S, Waard M De, Kenani A. Doxorubicin coupled to penetratin promotes apoptosis in CHO cells by a mechanism involving c-Jun NH2-terminal kinase. Biochem. Biophys. Res. Commun., 396, 908–14 (2010).

Walker L, Perkins E, Kratz F, Raucher D. Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative. Int. J. Pharm., 436, 825–32 (2012).

Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat. Mater., 12, 967–77 (2013).

Eguchi A, Dowdy SF. siRNA delivery using peptide transduction domains. Trends Pharmacol. Sci., 30, 341–5 (2009).

Guo Z, Peng H, Kang J, Sun D. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications (review). Biomed. Reports, 4, 528–34 (2016).

Gao H, Zhang Q, Yang Y, Jiang X, He Q. Tumor homing cell penetrating peptide decorated nanoparticles used for enhancing tumor targeting delivery and therapy. Int. J. Pharm., 478, 240–50 (2015).

Derakhshankhah H, Jafari S. Cell penetrating peptides: A concise review with emphasis on biomedical applications. Biomed. Pharmacother., 108, 1090–6 (2018).

De La Torre BG, Hornillos V, Luque-Ortega JR, Abengózar MA, Amat-Guerri F, Ulises Acuña A, Rivas L, Andreu D. A BODIPY-embedding miltefosine analog linked to cell-penetrating Tat(48-60) peptide favors intracellular delivery and visualization of the antiparasitic drug. Amino Acids, 46, 1047–58 (2014).

Gallo M, Defaus S, Andreu D. 1988–2018: Thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Arch. Biochem. Biophys., 661, 74–86 (2019).

Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J. Control. Release, 174, 126–36 (2014).

Kuczer M, Konopińska D, Rosiński G. Insect gonadotropic peptide hormones : some recent. J. Pept. Sci., 1, 16–26 (2007).

Mason AJ, Leborgne C, Moulay G, Martinez A, Danos O, Bechinger B, Kichler A. Optimising histidine rich peptides for efficient DNA delivery in the presence of serum. J. Control. Release, 118, 95–104 (2007).

Kersemans V, Cornelissen B. Targeting the tumour: Cell penetrating peptides for molecular imaging and radiotherapy. Pharmaceuticals, 3, 600–20 (2010).

Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: What do they tell us? Biopolymers, 47, 435–50 (1998).

Ganz T, Lehrer RI. Antimicrobial peptides of vertebrates. Curr. Opin. Immunol., 10, 41–4 (1998).

Russell-Jones GJ, Alpers DH. Vitamin B12 transporters. Pharm. Biotechnol., 12, 493–520 (1999).

Published

2021-03-31

How to Cite

Shah, V. R. ., Shah, Y. D. ., & Athalye, M. N. . (2021). Novel approaches in development of cell penetrating peptides. Journal of Applied Pharmaceutical Research, 9(1), 08-24. https://doi.org/10.18231/JOAPR.2021.9.1.08.24

Issue

Section

Articles