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Article Information  ABSTRACT 
Received: 30th December 2024  Background: The estrogen alpha receptor (ERα) is critical in breast carcinogenesis. Although selective 

estrogen receptor modulators like tamoxifen are clinically used, their adverse effects highlight the need 

for safer alternatives. The study uses computational methods to identify potential ERα inhibitors within 

a benzimidazole scaffold. Methodology: This study employed computational approaches, including 

pharmacophore generation, 3D-QSAR, virtual screening, molecular docking, and in silico ADME/Tox 

analysis. The best pharmacophore model (DDRRR_1) identified two hydrogen donors and three 

aromatic rings as critical features. Moreover, a rigorous external validation was used on decoy databases 

with optimized metrics (ROC, BEDROC, AUROC). A subsequent atom-based 3D-QSAR model with a 

high correlation coefficient (R² = 0.9), cross-validated coefficient (Q² = 0.8), and Fisher ratio (F = 80.1) 

was developed. Benzimidazole scaffolds from PubChem were screened, followed by docking against 

ERα (PDB ID: 3ERT) and ADMET profiling. Results and Discussion: The pharmacophore model 

validated the importance of the identified features. The 3D-QSAR model effectively screened 

benzimidazole scaffolds, with five component PLS factors, supporting the pharmacophore findings. This 

model effectively screened benzimidazole scaffolds obtained from the PubChem database, followed by 

molecular docking against the targeted protein ERα (PDB ID: 3ERT) and identified five promising 

compounds. ADME/Tox profiling revealed PubChem ID 3074802 (2-[2-(1H-indol-3-yl) ethyl]1H-

benzimidazole) has favourable pharmacokinetics and a low toxicity profile. Conclusion: These findings 

indicate that PubChem ID 3074802 is a promising candidate for further therapeutic drug development 

in breast cancer treatment. It demonstrates the highest binding affinity (-9.842 kcal/mol) compared to 

the standard drug Tamoxifen (-5.357 kcal/mol) and exhibits a favorable ADME/Tox profile.  
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INTRODUCTION 
Cancer is becoming a global health issue, becoming the second 
leading cause of death in the United States, with an expected 
count of 2,001,140 new cancer cases, with an estimated 
mortality rate of 611,720 in the year 2024. Breast cancer has 
been identified to cause the highest morbidity and the second-
highest mortality in females, among all cancer types. It alone 
counts for 310,720 new cancer cases (32% of all cancer cases) 
and 42,250 deaths (15% of all cancer cases) in the year 2024. It 
may be presumed that by the year 2030, nearly 2 million cases 
of breast cancer will be reported all over the globe [1]. As the 
treatment and diagnosis were delayed due to the COVID-19 
pandemic, it is necessary to expedite the treatment and diagnosis 
processes with a good healthcare service [2, 3]. 
 
In India, as per the ICMR report, “one in every nine persons has 
a risk of cancer” [4]. Breast cancer is the most common cancer 
in Indian women, also accounting for 14% of malignancies. 
According to statistics, a woman in India receives a breast cancer 
diagnosis every four minutes. It is equally endemic in rural and 
urban India. Breast cancer survival has become more and more 
challenging day by day, and more than half of Indian women 
diagnosed with breast cancer are in stage 3 or 4. After treatment, 
the survival rate for Indian women is 60%, whereas it is 80% in 
the United States [5]. The increase in cancer rate was due to 
unhealthy lifestyles, urbanization, and air pollution, which is 
highly prevalent in socio-economic countries like India [6].  
 
Estrogen receptors (ER) are the major marker for predicting 
breast cancer. It is of two subtypes, i.e., ERα and Erβ, having 
different binding affinities to produce their response. Among 
these, the disturbance in ERαsignalling pathways is remarkably 
responsible for postnatal mammary gland development, breast 
carcinogenesis and its progression, and is responsible for 
hormone-type breast cancer. Selective Estrogen Receptor 
Modulators (SERMs) such as tamoxifen and raloxifene block 
estrogen signals by binding to estrogen receptors in breast tissue. 
More than 50% of breast cancers exhibit overexpression of 
estrogen receptors (ERα), and approximately 70% of these cases 
respond to anti-estrogen therapies such as tamoxifen [7]. 
However, they can cause side effects because they also exert 
estrogenic effects on healthy cells. Moreover, tamoxifen and its 
active metabolite (4-OHT) have also faced limitations by 
producing resistance to treatment in 86.7% of ERα-positive 
cases. These results highlight the necessity of developing drugs 

that can enhance the treatment for breast cancer with minimum 
side effects [8, 9]. To date, ERα-positive breast cancer remains 
a primary focus for clinical therapy due to its central role in 
regulating cell division, differentiation, apoptosis, and migration 
[10]. Nitrogen-containing heterocyclic rings have high 
significance in medicinal chemistry due to an electron-rich 
nitrogen atom, which favors the formation of hydrogen bonds or 
dipole-dipole interactions. These interactions help improve 
biological activity by providing high binding affinity with the 
biological targets or diversity of enzymes [11]. Benzimidazole, 
a nitrogen-containing heterocyclic moiety, contains a benzene 
ring fused with an imidazole ring as given in Figure 1. Its 
amphoteric nature plays an important role in developing 
chemical interactions with a wide range of therapeutic targets, 
thereby exhibiting various pharmacological effects, and thus has 
generated a great scientific interest nowadays [12]. 

 
Figure 1: Chemical structure of benzimidazole nucleus 

The benzimidazole structure enables it to bind with DNA, which 
helps in apoptosis induction, disruption of the microtubule 
network, inhibition of DNA synthesis, and prevents the 
development of cancer cells [13, 14]. There are many marketed 
formulations containing benzimidazole moiety in their parent 
structures and have a role in cancer treatment like liarozole 
(retinoic acid metabolism blocking agent (RAMBA)) and 
pracinostat (histone deacetylase inhibitor), Veliparib (PARP-1/2 
inhibitor, potentiate DNA damaging agent), Carbendazim 
(inhibits tumor cell proliferation), Nocodazole (microtubule 
depolymerizing agent) and Bendamustine (alkylating agents). 
Still, all these drugs have faced some side effects like nausea, 
headache, pruritus, and epistaxis [13]. To improve this 
complication, there is a great need to find new therapeutic 
molecules with minimal side effects and better potential to deal 
with breast cancer. 
 
In the past, drugs have been discovered by experimental and 
random screening techniques, which require a lot of time (about 
10-20 years) and money (avg. cost 1 to 2 million USD) because 
the molecules pass through various phases before they can get 
market access. Nowadays, several computational approaches are 
available that can accelerate the efficiency of the drug design and 
development process, also called rational drug design. The 
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Computational approaches, such as pharmacophore generation, 
3D-QSAR analysis, molecular docking, etc, help in examining 
diverse molecules in a shorter time and evaluating their binding 
affinity with the target of interest and pharmacokinetic profile 
before experimental or in vitro testing, and pave the way for 
medicinal chemists [15]. 
 
Therefore, the present research aimed to identify selective and 
potent molecules as ERα inhibitors for breast cancer treatment 
using a comprehensive approach that combined ligand and 
structure-based drug design strategies. This was followed by 
evaluating the identified compounds' in silico pharmacokinetic 
and toxicity profiles. This study addresses a critical gap in breast 
cancer research by leveraging advanced computational 
techniques, focusing on discovering novel benzimidazole 
derivatives as ERα inhibitors. The findings lay a strong 
foundation for developing safer and more effective therapeutic 
options, addressing the limitations of current SERMs and paving 
the way for future experimental validation and clinical 
applications. 
 
MATERIALS AND METHODS  
Dataset 
The dataset comprised 60 benzimidazole molecules with 
reported in vitro activity against the MCF-7 cancer cell line, 
prominently expressing the ERα receptor. IC50 values, converted 
to pIC50 using the formula pIC50= -log IC50, were the dependent 
variables for 3D-QSAR modelling. The molecules, retrieved 
from recent literature, were chosen for their diverse 
pharmacophoric features and consistent biological activity 
measured via the MTT assay method [16, 17]. Each molecule 
was generated in ChemDraw (version 15.0), optimized in the 
LigPrep module of Maestro (version 13.1), where tautomeric 
states and conformers were not generated, and charged species 
were neutralized. The OPLS2005 force field was utilized to 
ensure that only low-energy conformations were considered 
[18]. 
 
Pharmacophore Model Generation 
A pharmacophore is a molecular framework consisting of 
specific features within a molecule that are recognized at a 
receptor site, influencing biological activity by either 
stimulating or inhibiting it [19]. Pharmacophore models were 
generated when the structure of a known active ligand was 
available, while the macromolecular target structure was absent, 

and is known as Ligand-based pharmacophore modeling. It is 
becoming a fundamental computational approach in facilitating 
the drug discovery process. In general, generating a 
pharmacophore from multiple ligands involves the following 
steps. Firstly, the ligands' conformational space is explored, all 
the ligands are aligned, and later, the essential common chemical 
features are determined to construct pharmacophore models 
[20]. In this study, the pharmacophore modeling was conducted 
using the PHASE module in Maestro 13.1 of Schrodinger 
software [21]. PHASE provides a set of six pharmacophoric 
features, including hydrogen bond acceptors or donors, anionic, 
cationic, hydrophobic, and aromatic groups [22, 23]. Finally, 
conformations of selective active molecules were aligned to 
generate common pharmacophoric features [24].  
 
In this approach for modeling pharmacophores, only the active 
chemicals are often considered. The “Develop pharmacophore 
hypothesis” function of the Phase module was used to generate 
a pharmacophore from multiple ligand entries. For creating a 
common pharmacophore, the pIC50 values ranged from 8.276 
to 4.622 are defined as active, with pIC50>5.41, and inactive, 
with pIC50<5.40, because active molecules possess crucial 
structural features essential for rational drug design or binding 
to the receptor binding site, thereby influencing potency and 
selectivity in therapy [24]. Three to five pharmacophoric key 
sites are utilized for pharmacophore generation to create an 
optimal combination of features shared among highly active 
compounds. Subsequently, the resulting pharmacophores are 
classified based on their scoring algorithm, such as number of 
matches, volume, vector, site score, and survival score [25]. 
Scoring was used to identify the most promising hypothesis by 
the comprehensive ranking of all hypotheses based on their 
performance score (survival score, site score, vector score, and 
volume score). High parameter values express a high-quality 
pharmacophore model. 
 
Pharmacophore Validation 
To ensure the effectiveness of the pharmacophore model in 
guiding virtual screening, it was validated through enrichment 
studies. This process assesses the accuracy and specificity of the 
model in selecting active molecules from a large pool of 
candidates. Validation employed an external test set containing 
over 1000 decoy molecules obtained from the Directory of 
Useful Decoys (DUD) (https://dud.docking.org/). Decoy 
molecules are inactive compounds with similar chemical 



Journal of Applied Pharmaceutical Research 13 (2); 2025: 149 – 163 Marwaha et al.  
 

 
 Journal of Applied Pharmaceutical Research (JOAPR)| March – April 2025 | Volume 13 Issue 2 |  152 

properties to active molecules, and including them helps test the 
ability of the model to differentiate true actives from random 
structures [26]. Additionally, 15 confirmed active molecules 
were included to evaluate the model's predictive ability for 
identifying known actives. Subsequently, the active and decoy 
datasets underwent preprocessing using the LigPrep module. 
Notably, ionization states and tautomers were not generated, 
assuming a neutral pH of 7.0 for the screening process. The 
"hypothesis validation tool" within the Phase module was 
utilized for the validation process. This tool inputs the 
pharmacophore hypothesis file and the active and decoy 
datasets. It evaluates the performance using various metrics such 
as Phase Hypo Score, Enrichment Factors (EF1%), 
BEDROC160.9, receiver operating characteristics (ROC), and 
Area Under Accumulation Curve (AUAC) [27, 28]. 
 
3D-QSAR 
An external validation process was conducted to evaluate the 
robustness of the developed pharmacophore model. This 
involved predicting the biological activity of molecules from a 
separate test set. The original dataset of 60 molecules was 
randomly divided into two subsets using the automated random 
selection function within the Phase software.  The larger portion 
(75%) was designated as the training set to build the model. The 
remaining 25% of molecules formed the test set for evaluating 
the model's reliability (Supplementary Table 1). ‘Phase’ offers 
two primary alignment methods for the 3D structures of 
molecules, including pharmacophore-based alignment, which 
aligns molecules based on their functional features. In contrast, 
atom-based alignment aligns the molecules based on individual 
atom positions. The choice of alignment method can influence 
the performance of the model [21]. This study employed an 
atom-based Quantitative Structure-Activity Relationship 
(QSAR) model as they have the same molecular framework. 
QSAR is a computational technique that helps us understand the 
relationship between the molecule's structure and its biological 
activity. The atom-based approach offers a more detailed picture 
than other methods by representing each molecule as a collection 
of overlapping spheres, where each sphere corresponds to a 
single atom in the molecule [21, 29]. A set of rules based on 
atomic properties classifies each atom into one of six categories. 
These categories capture key chemical features: hydrogen bond 
donors (D), hydrophobic/nonpolar regions (H), negative and 
positive charges (N and P), electron-attracting atoms (W), and 
any remaining atom types (X). This classification system allows 

the model to account for the individual contributions of different 
atomic functionalities to the overall biological activity of the 
molecule [30]. 
 
To ensure the robustness of the pharmacophore model, an atom-
based 3D-QSAR analysis was performed using Partial Least 
Squares (PLS) regression. This technique identifies latent 
factors that explain the relationship between the molecular 
structure and biological activity. Each model comprised five or 
more PLS factors, up to a maximum of N/3 PLS factors (where 
N is the number of ligands in the training set), and was used in 
the PLS regression. In this study, the optimal number of PLS 
factors was determined to be five. Including more factors 
resulted in diminishing returns, with a decrease in statistical 
significance and predictive ability [31]. The study employed 
several statistical metrics to assess the performance of the final 
PLS QSAR model. These metrics included the R² (regression 
coefficient), Q²CV (cross-validation coefficient), F-statistic 
(variance), confidence interval (P), RMSE (mean squared error), 
and Pearson's correlation coefficient (r). These parameters 
provide insights into how well the model fits the data, and offer 
statistically reliable predictions (F-statistic, P-value). 
Additionally, RMSE measures the closeness of predictions to 
actual values, while Pearson's correlation coefficient indicates 
the strength and direction of the relationship between predicted 
and observed activity [32]. The insights from the QSAR studies 
are invaluable for designing and synthesizing novel, promising 
molecules. A key advantage of the 3D-QSAR technique is its 
ability to generate contour maps around the studied molecules. 
By analysing these coloured cubes, researchers can identify the 
key molecular features favourable or unfavourable for ligand 
interaction with the target receptor. Blue cubes depict regions 
favourable for activity, while red cubes depict unfavourable 
regions [33].  
 
High throughput virtual screening (HTVS) and molecular 
docking 
During the initial phase of drug design, an extensive database of 
compounds is evaluated using HTVS. This process helps to 
identify potential lead compounds that may have the desired 
biological activity and to undergo more in-depth analysis of a 
drug candidate with improved efficacy and safety profiles. The 
PubChem database contained 7,133 potential benzimidazole-
containing molecules having druglike properties or following 
the Lipinski rule of five. In the PubChem database, several other 
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parameters, like rotatable bond (<10) and polar surface area 
(<140), were also applied. Further, all the potential molecules 
were screened from the DDRRR_1 hypothesis model by using 
the Phase Ligand Screening module to identify only those hit 
molecules with similar pharmacophoric group matches. 
Structure-based HTVS involves a molecular docking approach 
that predicts the binding mode of a database of compounds 
against a protein target, facilitating efficient identification of 
potential drug candidates. Here, ERα was selected as a targeted 
protein for evaluating the binding affinity of the screened 
compounds. The targeted protein structure (PDB ID: 3ERT) was 
downloaded from the Protein Data Bank (PDB) 
(https://www.rcsb.org/ structure/3ERT), consisting of a single 
ligand and protein chain with a resolution of 1.90 Å and no 
mutations. The preparation and optimization of the protein were 
done using the ‘protein preparation wizard’ module of GLIDE 
[34]. Further, the co-crystallized ligand in the targeted receptor 
has been used for grid generation and identification of the 
binding pocket. The molecules passing pharmacophore 
screening were then docked into the 3ERT crystal structure 
using Glide XP to estimate their binding affinities. Glide XP 
docking scores served as a preliminary assessment. 
Subsequently, the bound conformations were used to calculate 
the binding free energy or a related affinity measure for the most 
promising candidates. These compounds were then selected for 
further ADME/Tox analysis. 
 
ADME/T Prediction 
The development of in silico methods in recent times for 
developing new molecules has been approved by the USFDA. 
However, there is still a high chance of late-stage attrition or 
drug applicability in clinical trials, causing failure of the drug 
molecule. The main reason behind this problem was drug safety 
and toxicity profile (ADME/T), which plays a keen role in drug 
development. Therefore, it is necessary to find a molecule with 
an optimized ADME/T profile [35]. The top five hits identified 
through pharmacophore screening and binding affinity 
calculations were then subjected to ADME/T analysis using 
ADMET Lab 2.0, a free web tool. This in silico approach helps 
evaluate the physicochemical properties of the compounds early 
in the drug design process, potentially reducing the risk of 
ADME/T issues later in development. The obtained data 
included several pharmacokinetic characteristics, including 
blood-brain barrier permeability, rule of five, octanol/water 
coefficient, Caco cell permeability, and T1/2. There are various 

physicochemical parameters, as well as toxicity parameters, that 
are applied to eliminate undesirable and toxic compounds.  
Table 1: Score of different parameters of the generated 
Pharmacophore hypothesis.  

Sl 
No HypoID Survival 

Score 
Site 

Score 
Vector 
Score 

Volume 
Score 

1  DDRRR_1 6.118 0.976 0.985 0.879 
2  ADDRR_1 5.840 0.974 0.985 0.879 
3  DDRR_1 5.670 0.974 0.98 0.879 
4  DRRR_1 5.65 0.989 0.984 0.871 
5  DDRR_2 5.633 0.975 0.983 0.876 
6  DRRR_2 5.618 0.968 0.97 0.867 
7  DDRR_3 5.588 0.970 0.984 0.844 
8  ADRR_1 5.457 0.961 0.977 0.868 
9  ADRR_2 5.457 0.963 0.979 0.866 
10  ADDR_1 5.345 0.971 0.986 0.848 
11  ADDR_2 5.338 0.962 0.972 0.858 
12  ADRR_3 5.045 0.765 0.842 0.690 
13  DRR_1 5.323 0.994 0.98 0.871 
14  DRR_2 5.297 0.996 0.981 0.871 
15  DRR_3 5.284 0.999 1 0.862 
16  DRR_4 5.284 0.997 0.994 0.857 
17  RRR_1 5.278 0.994 0.976 0.873 
18  DDR_1 5.27 0.991 0.983 0.832 
19  DRR_5 5.268 0.969 0.972 0.870 
20  DDR_2 5.241 0.982 0.980 0.834 
21  ARR_1 5.199 0.975 0.965 0.857 
22  ADR_1 5.151 0.999 1 0.858 

 
RESULTS AND DISCUSSION 
Generation of Pharmacophore Model 
A ligand-based pharmacophore model was developed to search 
for novel ERα inhibitors. This approach utilizes the structural 
features (e.g., hydrogen bond donors, hydrophobic regions) of 
previously reported inhibitors to identify potential new 
candidates. Various hypotheses were generated, each 
representing a combination of these pharmacophoric features 
(acceptor [A], donor [D], hydrophobic [H], negative ionic [N], 
positive ionic [P], and aromatic ring [R]) found in the training 
set molecules. Table 1 summarizes all the generated models and 
their combinations of shared active compound features. A metric 
called the survival score was used to identify the best hypothesis. 
This score ranged from 6.1185 (highest for model DDRRR_1) 
to 5.1512 (lowest for model ADR_1). Hypotheses with only 
three or four features were excluded due to their low survival 
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scores, suggesting an inability to capture the complete range of 
binding interactions within the training set. Among the 
remaining models with five features, pharmacophore 
(DDRRR_1) was chosen for further analysis due to its superior 
survival score [25]. 
 
Pharmacophore Model Validation 
The pharmacophore model was validated to evaluate the 
predictive potential of the pharmacophore model and 
authenticate the pharmacophore design [36]. Before database 
screening, the structure-based pharmacophore model was 
validated to distinguish active compounds from inactive ones 
(decoy molecules). Enrichment studies were employed to 
validate the chosen pharmacophore model (DDRRR_1). These 
studies assessed the model's ability to enrich for truly active 
compounds. The validation process involved an initial screening 
where the model was challenged to differentiate between 15 
well-established active molecules and a database of decoy 
molecules. So, an extensive collection of over 1,000 decoys was 
retrieved from the DUD-E database, a directory of decoy 
databases. These decoys share similar properties with the active 
molecules but lack the desired inhibitory activity. Statistical 
parameters such as Enrichment Factor (EF), Robust Initial 
Enhancement (RIE), Receiver Operating Characteristic (ROC), 

and Boltzmann-Enhanced Discrimination of ROC (BEDROC) 
were assessed. These parameters were used to benchmark the 
model's reliability and accurately rank compounds, as reported 
in Table 2. Generally, a model with a higher AUC value should 
exhibit better predictability and provide a summary of model 
performance. The AUC value ranges between 0 and 1, where 1 
indicates a model with perfect prediction accuracy. Five featured 
hypotheses showed astonishing results in our validation process, 
with the highest phase hypo score of 1.36 observed for 
ADDRR_1. Therefore, pharmacophore DDRRR_1 was selected 
(Table 2). The ROC plots, depicting sensitivity versus 
specificity, demonstrate the precision in identifying true 
positives, while the Enrichment Factor reveals the ability of the 
pharmacophore to differentiate actives from decoys. ROC 
analysis visually represents the sensitivity and specificity ratio 
validation process, showing how effectively the model 
distinguishes active from inactive compounds (Figure 2). A 
steeper ROC curve, reaching a plateau at the end, indicates a 
model that excels at identifying more active compounds.  Higher 
AUC values (closer to 1) suggest better model performance, 
while lower values (closer to 0) indicate a less reliable model. 
The results for DDRRR_1 indicate that the model successfully 
distinguishes true actives from decoy compounds and can 
identify inhibitors based on their potency.

Table 2. Validation parameters of the generated pharmacophore. 
Hypothesis Phase Hypo Score EF1% BEDROC160.9 ROC AUAC Matches 
DDRRR_1 1.36 100.15 1 1 1 4 of 5 
ADDRR_1 1.34 100.15 1 1 1 4 of 5 

3D-QSAR 
The top model with good predictive power, denoted as 
DDRRR_1 (two hydrogen bond donors and three aromatic 
rings), was identified based on a five-point hypothesis (Fig. 3a). 
This model features two donor groups (DD, blue) and three 
aromatic rings (RRR, brown). Rings R6 and R7 correspond to 
the benzimidazole ring, while one donor group maps to the NH 
of the benzimidazole group, and the other donor represents the 
substituted NH group. The interatomic distances in Å are shown 
in Figure 3b, while Figure 3c and 3d depict the mapping of active 
and inactive compounds onto the pharmacophore, respectively. 
These figures show that active ligands exhibit better alignment 
with the DDRRR_1 pharmacophore, suggesting their potential 
for higher activity. This highlights the importance of good 
alignment for accurate activity prediction in the 3D-QSAR 
model. To design theoretical models and assess their robustness, 

60 benzimidazole scaffolds were used. All compounds exhibit 
biological activity within a three-unit logarithmic range.  

 
Figure 2. ROC curve of a generated best pharmacophore 
model (DDRRR1) 
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The developed atom-based 3D-QSAR model involved 
generating multiple factors using the partial least squares (PLS) 
technique. Among these factors, the 7th partial least-squares 
factor emerged as the most suitable model due to its good 
statistical significance and strong predictive power. The 
selection of the 5th factor was based on the observed gradual 

improvement in model performance up to this point. The 
combined effects of H-bond donors, hydrophobic/non-polar 
character, negative ionic character, positive ionic character, and 
electron-withdrawing groups were evaluated, and all statistical 
parameter values are presented in Table 3. 

 
Figure 3: (a) Pharmacophoric features of validated pharmacophore model (DDRRR_1) (b) Spatial arrangement of 
DDRRR_1 feature (c) DDRRR_1 model alignment of active molecules. In contrast, (d) DDRRR_1 model alignment of 
inactive molecules. 
The model with the highest Q² value exceeding 0.5 was chosen 
based on its superior predictive ability. Additionally, a 
comprehensive external validation was performed to assess 
model robustness. This validation involved calculating several 
metrics for both the test set (RMSE, Q², and Pearson correlation 
coefficient) and the training set (R², R²CV, and Fisher's (F) 
ratio). A Y-randomization test yielded even better results, further 
supporting the model's validity. In general, the R2 value lies 
between 0.7 and 0.9. Stability should be closer to 1, the F value 
must be maximized as much as possible, to define the model is 
not a false positive, the P value should be low, the RMSE value 
lies between 0.4 and 0.5, the Q2 value must be closer to 1, and 
and the Pearson’s value should be closer to 1. Internal validation 
indicated the robustness and predictive ability of the model. The 
internal validation results demonstrated excellent performance 

for the atom-based 3D-QSAR model. The training set, consisting 
of 43 compounds, exhibited a strong correlation coefficient (R² 
= 0.94), indicating a close relationship between the predicted and 
actual biological activity. Additionally, a high Fisher ratio (F = 
80.1) further supported the statistical significance of the model. 
The predictive capability was assessed using a separate test set 
of 17 compounds. The results were highly promising, with a high 
cross-validated correlation coefficient (Q² = 0.85) and Pearson's 
R (0.94). These metrics indicate a strong correlation between the 
predicted and observed activity in the unseen test set. The large 
F-value observed in the training set (F = 80.1) suggests a 
statistically robust model, and the small significance level of the 
variance ratio (P) further strengthens this confidence. A 
comprehensive summary of these results is presented in Table 3. 
Scatter plots were generated to visually represent the model's 
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performance (Figure 4a and 4b), depicting the observed versus 
predicted biological activity for both the training and test set 
molecules. These plots demonstrate a good distribution of data 
points, particularly in the test set, which aligns well with the 

best-fit line (y = 0.83x + 0.80, R² = 0.89). This visual 
confirmation further validates the ability of the model to 
accurately predict the biological activity of unseen compounds 
[37].

Table 3. PLS statistical parameters of the selected 3D-QSAR model (DDRRR1). 
PLS FACTOR SD R2 R2CV F P RMSE Q2 PEARSON-R 

1 0.6927 0.6689 0.5984 82.8 2.16e-11 0.91 0.6002 0.8555 
2 0.6192 0.7420 0.5676 57.5 1.71e-12 0.91 0.6002 0.8600 
3 0.5751 0.7830 0.4999 46.9 5.22e-14 0.88 0.6228 0.8722 
4 0.5025 0.8385 0.3356 49.3 1.52e-14 0.73 0.7398 0.9160 
5 0.4246 0.8878 0.1748 58.5 1.49e-16 0.59 0.8305 0.9423 
6 0.3550 0.9236 0.1284 72.6 1.27e-18 0.57 0.8427 0.9376 
7 0.3158 0.9413 0.1494 80.1 1.21e-19 0.55 0.8553 0.9442 

 
Figure 4. The scatter plots depict the correlation between the experimental and predicted biological activity of the 
benzimidazole inhibitors in the (a) training set and (b) test set. The solid line represents the best-fit line with the equation y 
= 0.83x + 0.80 (R² = 0.89) for the test set. 
Contour Map Analysis 
Contour plot analysis was performed at specific locations of the 
molecule to elucidate the essential pharmacophoric regions. The 
3D-QSAR models make it easier to see the contours of the 
ligand-receptor interactions and pinpoint the positive and 
negative activity coefficients that responsible for the biological 
activity like hydrogen bond donor, hydrophobic/ non-polar, 
positive, and negative ionic and electron withdrawing properties. 
The blue cubes represent the positive contribution of different 
groups while the red cubes indicate negative contribution. For 
visualizing the generated 3D-QSAR model and exploring its 
correlation with inhibitory activity, one or more ligands from the 
series have diverse inhibitory activities, were selected for 
analysis. For this, the most active compound 28 (pIC50= 8.337) 
and least active compound 56(pIC50= 4.622) were taken for 

visualization purpose and shown in Figure 5a, 5b, 5c, 5d, and 5e. 
The effect of hydrogen bond donor, the blue cubes at amino 
group (C-1 and C-2) of benzimidazole favours the activity 
indicated the preference of hydrogen bond donor group at D5 
and D4 (pharmacophoric features) position for activity of 
compound 28 as shown in Figure 5a. Compound 56 has the 
lowest activity (pIC50 4.6) which might be due to absence of 
‘NH’ group near the benzimidazole moiety (D7 pharmacophoric 
features) that means the presence of ‘NH’ favourably 
contributed to activity. Presence of blue cubes nearer to 
benzimidazole ring favours the activity while presence of red 
cubes at terminal end of substituted benzimidazole ring indicated 
unfavourable regions for hydrophobic interactions which high 
inhibitory activity of compound 28 (Figure 5b). While in 
compound 56, the attachment of substituted alkyl chain at 
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benzimidazole ring indicated unfavourable for inhibitory 
activity in Figure 5c. In the contour plot of electron withdrawing 
features, compound 28 contain ‘NH’ of benzimidazole ring 
favours the activity and red cubes at terminal end indicates 

unfavourable regions for electron withdrawing regions (Figure 
5d). Compound 56 the attachment of long chains to C-2 position 
of benzimidazole moiety was unfavourable for inhibitory 
activity (Figure 5e). 

 
Figure 5. Atom-based 3D-QSAR based contour maps in the context of favourable and unfavourable regions with blue and 
red effects. Compound 28 (highest activity) and Compound 56 (least activity) were used as the template and were shown in 
ball-stick model (a) hydrogen bond donor (b) hydrophobic/ non-polar (c) Electron withdrawing 
 

Pharmacophore-based Virtual Screening for identifying 
novel benzimidazole inhibitors  
The compounds obtained from the PubChem database after 
employing filters like the Lipinski rule of 5, no. of rotatable 
bonds, polar surface area (PSA), and drug likeness filter have 
been used to obtain potential molecules, which could be 
identified as a potential inhibitor for ERα. A virtual screening 
process was employed to identify potential new inhibitors with 
novel scaffolds. Initially, a search of the PubChem substructure 
database identified 7,133 compounds containing the 
benzimidazole moiety. To refine this large set, a validated 
pharmacophore model (DDRRR_1) was used as a 3D query for 
filtering. This approach effectively reduced the number of 
candidate inhibitors to 1143, demonstrating the efficiency of the 
pharmacophore model in eliminating unsuitable structures based 

on their 3D arrangement of key features. The resultant 
compounds were subjected to Molecular Docking against the 
targeted receptor, i.e., ERα (PDB ID: 3ERT) [38]. Molecular 
docking for the selected compounds was executed using the 
GLIDE program provided by Schrödinger 2023.  
 
Before docking, the compounds' 3D structures were prepared 
using the Maestro LigPrep module. This module generated 
multiple conformations for each ligand, considering different 
ionization states within the pH range of 7.0 ± 2.0. This 
comprehensive approach facilitates the exploration of ligand-
protein interactions and supports the rational design of potential 
therapeutic agents. The molecular docking screening process 
was performed on 1143 ligands obtained after pharmacophore-
based screening.  
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The top five best docked molecules were selected to evaluate 
more in-depth parameters like docking score, glide energy, and 
essential amino acid interaction. All the compounds were also 
compared with the standard drug Tamoxifen, SERM, has a 
docking score of -5.796kcal/mol, as given in Table 4, while 2D 
and 3D interaction images of all five top docked complexes were 

given in Figure 6. Thus, the results indicated that all the top 5 
protein-ligand complexes show better binding affinity, so they 
are considered for further ADME/Tox profile to identify the best 
molecule with the least toxicity profile and as a better therapeutic 
agent.

Table 4. The selected hits obtained by Pharmacophore-based virtual screening of compounds from the PubChem Database 
with their binding affinity using the GLIDE module. 

PubChem 
Compound 

Chemical Structure and 
IUPAC name 

Docking score 
(kcal/mol) 

Glide Energy 
(kcal/mol) 

Crucial amino acid residues and H-
bonding interactions 

3074802 
(C17H15N3) 

2-[2-(1H-indol-3-yl)ethyl]1H-
benzimidazole 

N

H
N NH

 

-9.842 -37.441 

GLY521, HIE524, LEU525, MET343, 
LEU346 (-NH), THR347, LEU349, 

ALA350, GLU353, ARG394, LEU391, 
MET388, LEU387, LEU384, TRP383, 

LEU428, PHE404 

71494439 
(C15H12F3N3) 

1H-benzimidazol-2-ylmethyl-
[3-(trifluoromethyl)phenyl] 

amine 

H2N

F F
F

N

H
N

 

-9.72 -35.189 

ILE424, MET421, GLY420, GLY521, 
HIE524, LEU525, MET343, LEU346 (-

NH),THR346, THR347, LEU349, 
ALA350, ARG394, LEU391, PHE404, 
LEU428, MET388, LEU387, LEU384, 

TRP383 

71682086 
(C18H19N3O2) 

2-amino-1-(3-phenylpropyl) 
benzimidazole-5-carboxylic 

acid methyl ester 

N

N

O

O NH2

 

-9.269 -42.015 

LEU391, MET388, LEU387, LEU384, 
TRP383, ASP351, ALA350, THR347, 
LEU346, MET343, LEU428, ILLE424, 
MET421, GLY420, GLU419, VAL418, 

GLY521, HIE524, LEU525 

135934901 
(C19H12N4O) 

2-(1H-imidazo[4,5-f][1,10] 
phenanthrolin-2-yl)phenol 

HO

N
N

HN
N

 

-9.221 -36.703 

HIE524, LEU525, MET528, MET343, 
LEU346, THR347 (-OH), ALA350, 

ASP351, GLU353, GLY420, MET421, 
ILE424, LEU428, ARG394, LEU391, 
MET388, LEU387, LEU384, TRP383, 

PHE404 

11739311 
(C21H16N4O) 

4-(2-anilino-3H-benzimidazol -
5-yl)isoindolin-1-one 

HN
O

H
N

N
NH

 

-9.215 -44.846 

LEU539, LEU536, TRP383, L3U384, 
LEU387, MET388, LEU391, ARG394 
(C=O), LEU428, LEU354, GLU353 (-

NH), ASP351, ALA350, LEU349, 
THR347, LEU346, MET343, LEU525 

Tamoxifen 

2-[4-[(Z)-1,2-diphenylbut-1-
enyl]phenoxy]-N,N-
dimethylethanamine 

ON

 

-5.357 -33.220 

LEU525, MET528, LYS529, CYS530, 
ARG394, LEU391, MET388, LEU387, 
LEU384, TRP381 (-C6H5), PHE404, 

MET343, LEU346, THR347, LEU349, 
ALA380, ASP 352, GLU353, LEU354 
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Absorption, Distribution, Metabolism, Excretion, and 
Toxicity predictions (ADME/Tox) 
Evaluating in silico ADME/Tox prediction is a critical step in 
selecting lead compounds before clinical trials. This approach is 
widely employed to minimize late-stage attrition caused by 
unfavourable toxicity profiles and to provide insights into the 
synthetic accessibility of potential drug candidates. In this study, 
the top five compounds were screened using ADMET Lab 2.0, 
a free web tool that facilitated the assessment of key parameters 
such as physicochemical properties, medicinal chemistry 
attributes, and toxicity profiles. The results of the ADME/Tox 
profile of all five compounds are given in Table 5. The analysis 
revealed that all five compounds fell within the optimal range of 
pharmacokinetic parameters. However, PubChem compound 
3074802 demonstrated the most favorable toxicity profile 
among the screened compounds, highlighting its superior safety 

and pharmacokinetic characteristics. The compound exhibited a 
low hepatotoxicity score (0.623), indicating minimal potential 
for liver toxicity. Additionally, its AMES test score (0.226) 
suggests a low likelihood of mutagenicity, while the 
carcinogenicity score (0.079) confirms a negligible risk of 
cancer-causing potential. Furthermore, the NR-AR score (0.581) 
indicates moderate interaction with nuclear receptors, which is 
acceptable for drug candidates. These toxicity parameters of 
PubChem compound 3074802 (2-[2-(1H-indol-3-yl) ethyl]1H-
benzimidazole) underscore the suitability as a safe and effective 
therapeutic agent and make it a suitable candidate for therapeutic 
applications in breast cancer treatment. These promising 
properties highlight its potential for further investigation through 
in vitro and in vivo studies, paving the way for its development 
as a novel breast cancer therapeutic [39].

Table 5. ADME/Tox profile of the top five best compounds screened from Molecular Docking 
Parameters Compounds Comment 

 3074802 71494439 71682086 135934901 11739311  
Physiochemical Property 

Mol. wt. 261.13 291.1 309.15 312.1 340.13 Optimal:100-600 
nHA 3 3 5 5 5 0-12 
nHD 2 2 2 2 3 0-7 
LogP 3.916 3.818 3.593 3.616 4.489 Optimal: 0-3 log mol/L 

Lipinski Accepted Accepted Accepted Accepted Accepted 
MW≤500; logP≤5; nHA≤ 10; nHD ≤5; 

Good absorption 
Synthetic Accessibility Score 1.975 2.007 1.954 2.442 2.346 SA<6 (easy to synthesize) 

Absorption 
Caco-2 permeability -5.099 -5.073 -4.791 -5.062 -5.251 Optimal: higher than -5.15 log cm/s 

Pgp-inhibitor 0.101 0.022 0.994 0.12 0.686 
0-0.3: excellent; 0.3-0.7: medium; 0.7-1.0: 

poor 

HIA 0.012 0.005 0.004 0.025 0.049 
0-0.3: excellent; 0.3-0.7: medium; 0.7-1.0: 

poor 
MDCK Permeability 1.47E-05 1.29E-05 1.95E-05 3.05E-05 7.04E-06 >2x10-6cm/s: excellent 

Distribution 

Plasma Protein Binding 97.24% 97.50% 96.23% 98.33% 97.35% 
Optimal <90% (probability of low 

therapeutic index) 
Volume Distribution 1.772 3.3 1.569 1.012 1.619 Optimal: 0.04-20L/kg 

BBB Penetration 0.336 0.406 0.948 0.388 0.439 
0-0.3: excellent; 0.3-0.7: medium; 0.7-1.0: 

poor 
Metabolism 

CYP1A2 inhibitor 0.994 0.991 0.938 0.991 0.962 
Category 0: Non-substrate / Non-inhibitor; 
Category 1: substrate / inhibitor 

CYP1A2 substrate 0.821 0.875 0.885 0.16 0.156 
CYP2C19 inhibitor 0.971 0.973 0.746 0.812 0.494 
CYP2C19 substrate 0.056 0.058 0.071 0.067 0.061 

Excretion 
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Clearance 4.353 4.503 9.323 3.381 3.806 ≥ 5: excellent;< 5: poor 

T1/2 0.807 0.404 0.378 0.525 0.301 
0-0.3: excellent; 0.3-0.7: medium; 0.7-1.0: 

poor 
Toxicity 

Hepatotoxicity 0.623 0.791 0.61 0.892 0.798 Category:0; Inactive 
Category:1; Active 

(0-0.3: excellent; 0.3-0.7: medium; 0.7-1.0: 
poor) 

AMES 0.226 0.039 0.169 0.881 0.826 
Carcinogenicity 0.079 0.135 0.856 0.339 0.163 

NR-AR 0.581 0.369 0.008 0.007 0.566 
 

 
Figure 6: The 2D and 3D interaction images of Glide XP (Xtra Precision) docking of best five compounds against targeted 
receptor ERα (PDB ID:3ERT) (a) Compound 3074802 (b) Compound 71494439 (c) Compound 71682086 (d) Compound 
135934901(e) Compound 11739311. 
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CONCLUSION 
This computational study outputs the design of cancer 
medication on structural insights and elucidates the selectivity 
mechanism for the quinoxaline analogues in marketed 
formulations. The common pharmacophore hypothesis, 
DDRRR1, was developed, revealing the importance of two 
hydrogen bond donor groups and three aromatic rings for 
optimal activity. A robust, predictive atom-based 3D-QSAR 
model was successfully developed. This model, designated 
DDRRR_1, exhibited excellent performance metrics, with 
strong agreement between the experimentally observed and 
predicted activity for the training set (R² = 0.9413) and the test 
set (R² = 0.89). Furthermore, visualization of the 3D-QSAR 
model provided valuable insights into the structure-activity 
relationships within the studied molecules.  
 
This understanding allows for identifying potential 
modifications to the molecular structure that could optimize 
binding interactions. A virtual screening approach was 
employed to identify potential inhibitors of the ERα receptor for 
breast cancer treatment. This strategy involved screening a 
benzimidazole compound library from PubChem using a 
pharmacophore model. Docking analysis was then performed on 
the top hits to assess their binding interaction with the ERα 
receptor. Moreover, ADME/T profile evaluation of the top 5 
docked complexes, compound PubChem ID 3074802 (2-[2-(1H-
indol-3-yl) ethyl]1H-benzimidazole) emerged as the most 
promising candidate.  
 
This compound exhibited a favourable docking score (-9.842 
kcal/mol), an optimal pharmacokinetic profile, and a limited 
toxicity profile, suggesting its potential for further development 
as a breast cancer therapeutic agent targeting ERα. The 
innovative use of advanced computational techniques in this 
work provides a robust framework for the rational design of safer 
and more effective ERα inhibitors, paving the way for future in 
vitro and in vivo investigations and potential clinical 
applications.  
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