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a benzimidazole scaffold. Methodology: This study employed computational approaches, including

pharmacophore generation, 3D-QSAR, virtual screening, molecular docking, and in silico ADME/Tox

Keywords analysis. The best pharmacophore model (DDRRR_1) identified two hydrogen donors and three
Benzimidazole, Cancer, aromatic rings as critical features. Moreover, a rigorous external validation was used on decoy databases
\?ic;(t:lljzli?%c I:eheerl]ri?g’cggjgseARl with optimized metrics (ROC, BEDROC, AUROC). A subsequent atom-based 3D-QSAR model with a
ADME/Tox. high correlation coefficient (R? = 0.9), cross-validated coefficient (Q? = 0.8), and Fisher ratio (F = 80.1)

was developed. Benzimidazole scaffolds from PubChem were screened, followed by docking against
ERa (PDB ID: 3ERT) and ADMET profiling. Results and Discussion: The pharmacophore model
validated the importance of the identified features. The 3D-QSAR model effectively screened
benzimidazole scaffolds, with five component PLS factors, supporting the pharmacophore findings. This
model effectively screened benzimidazole scaffolds obtained from the PubChem database, followed by
molecular docking against the targeted protein ERa (PDB ID: 3ERT) and identified five promising
compounds. ADME/Tox profiling revealed PubChem ID 3074802 (2-[2-(1H-indol-3-yl) ethyl]1H-
benzimidazole) has favourable pharmacokinetics and a low toxicity profile. Conclusion: These findings
indicate that PubChem ID 3074802 is a promising candidate for further therapeutic drug development
in breast cancer treatment. It demonstrates the highest binding affinity (-9.842 kcal/mol) compared to
the standard drug Tamoxifen (-5.357 kcal/mol) and exhibits a favorable ADME/Tox profile.
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INTRODUCTION
Cancer is becoming a global health issue, becoming the second

leading cause of death in the United States, with an expected
count of 2,001,140 new cancer cases, with an estimated
mortality rate of 611,720 in the year 2024. Breast cancer has
been identified to cause the highest morbidity and the second-
highest mortality in females, among all cancer types. It alone
counts for 310,720 new cancer cases (32% of all cancer cases)
and 42,250 deaths (15% of all cancer cases) in the year 2024. It
may be presumed that by the year 2030, nearly 2 million cases
of breast cancer will be reported all over the globe [1]. As the
treatment and diagnosis were delayed due to the COVID-19
pandemic, it is necessary to expedite the treatment and diagnosis
processes with a good healthcare service [2, 3].

In India, as per the ICMR report, “one in every nine persons has
a risk of cancer” [4]. Breast cancer is the most common cancer
in Indian women, also accounting for 14% of malignancies.
According to statistics, awoman in India receives a breast cancer
diagnosis every four minutes. It is equally endemic in rural and
urban India. Breast cancer survival has become more and more
challenging day by day, and more than half of Indian women
diagnosed with breast cancer are in stage 3 or 4. After treatment,
the survival rate for Indian women is 60%, whereas it is 80% in
the United States [5]. The increase in cancer rate was due to
unhealthy lifestyles, urbanization, and air pollution, which is
highly prevalent in socio-economic countries like India [6].

Estrogen receptors (ER) are the major marker for predicting
breast cancer. It is of two subtypes, i.e., ERa and Erp, having
different binding affinities to produce their response. Among
these, the disturbance in ERasignalling pathways is remarkably
responsible for postnatal mammary gland development, breast
carcinogenesis and its progression, and is responsible for
hormone-type breast cancer. Selective Estrogen Receptor
Modulators (SERMSs) such as tamoxifen and raloxifene block
estrogen signals by binding to estrogen receptors in breast tissue.
More than 50% of breast cancers exhibit overexpression of
estrogen receptors (ERa), and approximately 70% of these cases
respond to anti-estrogen therapies such as tamoxifen [7].
However, they can cause side effects because they also exert
estrogenic effects on healthy cells. Moreover, tamoxifen and its
active metabolite (4-OHT) have also faced limitations by
producing resistance to treatment in 86.7% of ERa-positive
cases. These results highlight the necessity of developing drugs

that can enhance the treatment for breast cancer with minimum
side effects [8, 9]. To date, ERa-positive breast cancer remains
a primary focus for clinical therapy due to its central role in
regulating cell division, differentiation, apoptosis, and migration
[10]. Nitrogen-containing heterocyclic rings have high
significance in medicinal chemistry due to an electron-rich
nitrogen atom, which favors the formation of hydrogen bonds or
dipole-dipole interactions. These interactions help improve
biological activity by providing high binding affinity with the
biological targets or diversity of enzymes [11]. Benzimidazole,
a nitrogen-containing heterocyclic moiety, contains a benzene
ring fused with an imidazole ring as given in Figure 1. Its
amphoteric nature plays an important role in developing
chemical interactions with a wide range of therapeutic targets,
thereby exhibiting various pharmacological effects, and thus has
generated a great scientific interest nowadays [12].

H
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Figure 1: Chemical structure of benzimidazole nucleus
The benzimidazole structure enables it to bind with DNA, which
helps in apoptosis induction, disruption of the microtubule
network, inhibition of DNA synthesis, and prevents the
development of cancer cells [13, 14]. There are many marketed
formulations containing benzimidazole moiety in their parent
structures and have a role in cancer treatment like liarozole
(retinoic acid metabolism blocking agent (RAMBA)) and
pracinostat (histone deacetylase inhibitor), Veliparib (PARP-1/2
inhibitor, potentiate DNA damaging agent), Carbendazim
(inhibits tumor cell proliferation), Nocodazole (microtubule
depolymerizing agent) and Bendamustine (alkylating agents).
Still, all these drugs have faced some side effects like nausea,
headache, pruritus, and epistaxis [13]. To improve this
complication, there is a great need to find new therapeutic
molecules with minimal side effects and better potential to deal
with breast cancer.

In the past, drugs have been discovered by experimental and
random screening techniques, which require a lot of time (about
10-20 years) and money (avg. cost 1 to 2 million USD) because
the molecules pass through various phases before they can get
market access. Nowadays, several computational approaches are
available that can accelerate the efficiency of the drug design and
development process, also called rational drug design. The
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Computational approaches, such as pharmacophore generation,
3D-QSAR analysis, molecular docking, etc, help in examining
diverse molecules in a shorter time and evaluating their binding
affinity with the target of interest and pharmacokinetic profile
before experimental or in vitro testing, and pave the way for
medicinal chemists [15].

Therefore, the present research aimed to identify selective and
potent molecules as ERa inhibitors for breast cancer treatment
using a comprehensive approach that combined ligand and
structure-based drug design strategies. This was followed by
evaluating the identified compounds' in silico pharmacokinetic
and toxicity profiles. This study addresses a critical gap in breast
cancer research by leveraging advanced computational
techniques, focusing on discovering novel benzimidazole
derivatives as ERa inhibitors. The findings lay a strong
foundation for developing safer and more effective therapeutic
options, addressing the limitations of current SERMs and paving
the way for future experimental validation and clinical
applications.

MATERIALS AND METHODS
Dataset

The dataset comprised 60 benzimidazole molecules with
reported in vitro activity against the MCF-7 cancer cell line,
prominently expressing the ERa receptor. ICso values, converted
to plCso using the formula plCso= -log ICso, were the dependent
variables for 3D-QSAR modelling. The molecules, retrieved
literature, their
pharmacophoric features and consistent biological activity
measured via the MTT assay method [16, 17]. Each molecule
was generated in ChemDraw (version 15.0), optimized in the
LigPrep module of Maestro (version 13.1), where tautomeric
states and conformers were not generated, and charged species
were neutralized. The OPLS2005 force field was utilized to
ensure that only low-energy conformations were considered
[18].

from recent were chosen for diverse

Pharmacophore Model Generation

A pharmacophore is a molecular framework consisting of
specific features within a molecule that are recognized at a
receptor site, influencing biological
stimulating or inhibiting it [19]. Pharmacophore models were
generated when the structure of a known active ligand was
available, while the macromolecular target structure was absent,

activity by either

and is known as Ligand-based pharmacophore modeling. It is
becoming a fundamental computational approach in facilitating
the drug discovery process. In general, generating a
pharmacophore from multiple ligands involves the following
steps. Firstly, the ligands' conformational space is explored, all
the ligands are aligned, and later, the essential common chemical
features are determined to construct pharmacophore models
[20]. In this study, the pharmacophore modeling was conducted
using the PHASE module in Maestro 13.1 of Schrodinger
software [21]. PHASE provides a set of six pharmacophoric
features, including hydrogen bond acceptors or donors, anionic,
cationic, hydrophobic, and aromatic groups [22, 23]. Finally,
conformations of selective active molecules were aligned to
generate common pharmacophoric features [24].

In this approach for modeling pharmacophores, only the active
chemicals are often considered. The “Develop pharmacophore
hypothesis” function of the Phase module was used to generate
a pharmacophore from multiple ligand entries. For creating a
common pharmacophore, the pIC50 values ranged from 8.276
to 4.622 are defined as active, with plC50>5.41, and inactive,
with plC50<5.40, because active molecules possess crucial
structural features essential for rational drug design or binding
to the receptor binding site, thereby influencing potency and
selectivity in therapy [24]. Three to five pharmacophoric key
sites are utilized for pharmacophore generation to create an
optimal combination of features shared among highly active
compounds. Subsequently, the resulting pharmacophores are
classified based on their scoring algorithm, such as number of
matches, volume, vector, site score, and survival score [25].
Scoring was used to identify the most promising hypothesis by
the comprehensive ranking of all hypotheses based on their
performance score (survival score, site score, vector score, and
volume score). High parameter values express a high-quality
pharmacophore model.

Pharmacophore Validation

To ensure the effectiveness of the pharmacophore model in
guiding virtual screening, it was validated through enrichment
studies. This process assesses the accuracy and specificity of the
model in selecting active molecules from a large pool of
candidates. Validation employed an external test set containing
over 1000 decoy molecules obtained from the Directory of
Useful Decoys (DUD) (https://dud.docking.org/). Decoy
molecules are inactive compounds with similar chemical
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properties to active molecules, and including them helps test the
ability of the model to differentiate true actives from random
structures [26]. Additionally, 15 confirmed active molecules
were included to evaluate the model's predictive ability for
identifying known actives. Subsequently, the active and decoy
datasets underwent preprocessing using the LigPrep module.
Notably, ionization states and tautomers were not generated,
assuming a neutral pH of 7.0 for the screening process. The
"hypothesis validation tool" within the Phase module was
utilized for the validation process. This tool inputs the
pharmacophore hypothesis file and the active and decoy
datasets. It evaluates the performance using various metrics such
as Phase Hypo Score, Enrichment Factors (EF1%),
BEDROC160.9, receiver operating characteristics (ROC), and
Area Under Accumulation Curve (AUAC) [27, 28].

3D-QSAR

An external validation process was conducted to evaluate the
robustness of the developed pharmacophore model. This
involved predicting the biological activity of molecules from a
separate test set. The original dataset of 60 molecules was
randomly divided into two subsets using the automated random
selection function within the Phase software. The larger portion
(75%) was designated as the training set to build the model. The
remaining 25% of molecules formed the test set for evaluating
the model's reliability (Supplementary Table 1). ‘Phase’ offers
two primary alignment methods for the 3D structures of
molecules, including pharmacophore-based alignment, which
aligns molecules based on their functional features. In contrast,
atom-based alignment aligns the molecules based on individual
atom positions. The choice of alignment method can influence
the performance of the model [21]. This study employed an
atom-based Quantitative  Structure-Activity  Relationship
(QSAR) model as they have the same molecular framework.
QSAR is a computational technique that helps us understand the
relationship between the molecule's structure and its biological
activity. The atom-based approach offers a more detailed picture
than other methods by representing each molecule as a collection
of overlapping spheres, where each sphere corresponds to a
single atom in the molecule [21, 29]. A set of rules based on
atomic properties classifies each atom into one of six categories.
These categories capture key chemical features: hydrogen bond
donors (D), hydrophobic/nonpolar regions (H), negative and
positive charges (N and P), electron-attracting atoms (W), and
any remaining atom types (X). This classification system allows

the model to account for the individual contributions of different
atomic functionalities to the overall biological activity of the
molecule [30].

To ensure the robustness of the pharmacophore model, an atom-
based 3D-QSAR analysis was performed using Partial Least
Squares (PLS) regression. This technique identifies latent
factors that explain the relationship between the molecular
structure and biological activity. Each model comprised five or
more PLS factors, up to a maximum of N/3 PLS factors (where
N is the number of ligands in the training set), and was used in
the PLS regression. In this study, the optimal number of PLS
factors was determined to be five. Including more factors
resulted in diminishing returns, with a decrease in statistical
significance and predictive ability [31]. The study employed
several statistical metrics to assess the performance of the final
PLS QSAR model. These metrics included the Rz (regression
coefficient), Q2CV (cross-validation coefficient), F-statistic
(variance), confidence interval (P), RMSE (mean squared error),
and Pearson's correlation coefficient (r). These parameters
provide insights into how well the model fits the data, and offer
statistically  reliable  predictions  (F-statistic, P-value).
Additionally, RMSE measures the closeness of predictions to
actual values, while Pearson's correlation coefficient indicates
the strength and direction of the relationship between predicted
and observed activity [32]. The insights from the QSAR studies
are invaluable for designing and synthesizing novel, promising
molecules. A key advantage of the 3D-QSAR technique is its
ability to generate contour maps around the studied molecules.
By analysing these coloured cubes, researchers can identify the
key molecular features favourable or unfavourable for ligand
interaction with the target receptor. Blue cubes depict regions
favourable for activity, while red cubes depict unfavourable
regions [33].

High throughput virtual screening (HTVS) and molecular
docking

During the initial phase of drug design, an extensive database of
compounds is evaluated using HTVS. This process helps to
identify potential lead compounds that may have the desired
biological activity and to undergo more in-depth analysis of a
drug candidate with improved efficacy and safety profiles. The
PubChem database contained 7,133 potential benzimidazole-
containing molecules having druglike properties or following
the Lipinski rule of five. In the PubChem database, several other
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parameters, like rotatable bond (<10) and polar surface area
(<140), were also applied. Further, all the potential molecules
were screened from the DDRRR_1 hypothesis model by using
the Phase Ligand Screening module to identify only those hit
pharmacophoric group matches.
Structure-based HTVS involves a molecular docking approach
that predicts the binding mode of a database of compounds
against a protein target, facilitating efficient identification of
potential drug candidates. Here, ERa was selected as a targeted
protein for evaluating the binding affinity of the screened
compounds. The targeted protein structure (PDB ID: 3ERT) was
downloaded from the Protein Data Bank (PDB)
(https://lwww.rcsb.org/ structure/3ERT), consisting of a single
ligand and protein chain with a resolution of 1.90 A and no
mutations. The preparation and optimization of the protein were
done using the ‘protein preparation wizard’ module of GLIDE
[34]. Further, the co-crystallized ligand in the targeted receptor
has been used for grid generation and identification of the
binding pocket. The molecules passing pharmacophore
screening were then docked into the 3ERT crystal structure
using Glide XP to estimate their binding affinities. Glide XP
docking scores served as a preliminary assessment.
Subsequently, the bound conformations were used to calculate
the binding free energy or a related affinity measure for the most
promising candidates. These compounds were then selected for
further ADME/Tox analysis.

molecules with similar

ADME/T Prediction

The development of in silico methods in recent times for
developing new molecules has been approved by the USFDA.
However, there is still a high chance of late-stage attrition or
drug applicability in clinical trials, causing failure of the drug
molecule. The main reason behind this problem was drug safety
and toxicity profile (ADME/T), which plays a keen role in drug
development. Therefore, it is necessary to find a molecule with
an optimized ADME/T profile [35]. The top five hits identified
through pharmacophore screening and binding affinity
calculations were then subjected to ADME/T analysis using
ADMET Lab 2.0, a free web tool. This in silico approach helps
evaluate the physicochemical properties of the compounds early
in the drug design process, potentially reducing the risk of
ADME/T issues later in development. The obtained data
included several pharmacokinetic characteristics, including
blood-brain barrier permeability, rule of five, octanol/water
coefficient, Caco cell permeability, and T1/2. There are various

physicochemical parameters, as well as toxicity parameters, that
are applied to eliminate undesirable and toxic compounds.
Table 1: Score of different parameters of the generated
Pharmacophore hypothesis.

Sl HypolD Survival Site Vector | Volume
No Score Score Score Score
1 DDRRR_1 6.118 0.976 | 0.985 0.879
2 ADDRR_1 5.840 0.974 | 0.985 0.879
3 DDRR_1 5.670 0.974 0.98 0.879
4 DRRR_1 5.65 0.989 | 0.984 0.871
5 DDRR_2 5.633 0.975 | 0.983 0.876
6 DRRR_2 5.618 0.968 0.97 0.867
7 DDRR_3 5.588 0.970 | 0.984 0.844
8 ADRR_1 5.457 0.961 | 0.977 0.868
9 ADRR_2 5.457 0.963 | 0.979 0.866
10 ADDR_1 5.345 0.971 | 0.986 0.848
11 ADDR_2 5.338 0.962 | 0.972 0.858
12 ADRR_3 5.045 0.765 | 0.842 0.690
13 DRR_1 5.323 0.994 0.98 0.871
14 DRR_2 5.297 0.996 | 0.981 0.871
15 DRR_3 5.284 0.999 1 0.862
16 DRR_4 5.284 0.997 | 0.994 0.857
17 RRR_1 5.278 0.994 | 0.976 0.873
18 DDR_1 5.27 0.991 | 0.983 0.832
19 DRR_5 5.268 0.969 | 0.972 0.870
20 DDR_2 5.241 0.982 | 0.980 0.834
21 ARR_1 5.199 0.975 | 0.965 0.857
22 ADR_1 5.151 0.999 1 0.858

RESULTS AND DISCUSSION
Generation of Pharmacophore Model

A ligand-based pharmacophore model was developed to search
for novel ERa inhibitors. This approach utilizes the structural
features (e.g., hydrogen bond donors, hydrophobic regions) of
previously reported inhibitors to identify potential
candidates. hypotheses were generated,
representing a combination of these pharmacophoric features
(acceptor [A], donor [D], hydrophobic [H], negative ionic [N],
positive ionic [P], and aromatic ring [R]) found in the training
set molecules. Table 1 summarizes all the generated models and
their combinations of shared active compound features. A metric
called the survival score was used to identify the best hypothesis.
This score ranged from 6.1185 (highest for model DDRRR_1)
to 5.1512 (lowest for model ADR_1). Hypotheses with only
three or four features were excluded due to their low survival

new

Various each

Journal of Applied Pharmaceutical Research (JOAPR)| March — April 2025 | Volume 13 Issue 2 | 153



Journal of Applied Pharmaceutical Research 13 (2); 2025: 149 - 163

Marwaha et al.

scores, suggesting an inability to capture the complete range of
binding interactions within the training set. Among the
remaining models with features, pharmacophore
(DDRRR_1) was chosen for further analysis due to its superior
survival score [25].

five

Pharmacophore Model Validation

The pharmacophore model was validated to evaluate the
predictive potential of the pharmacophore model
authenticate the pharmacophore design [36]. Before database
screening, the structure-based pharmacophore model was
validated to distinguish active compounds from inactive ones
(decoy molecules). Enrichment studies were employed to
validate the chosen pharmacophore model (DDRRR_1). These
studies assessed the model's ability to enrich for truly active
compounds. The validation process involved an initial screening
where the model was challenged to differentiate between 15
well-established active molecules and a database of decoy
molecules. So, an extensive collection of over 1,000 decoys was
retrieved from the DUD-E database, a directory of decoy
databases. These decoys share similar properties with the active
molecules but lack the desired inhibitory activity. Statistical
parameters such as Enrichment Factor (EF), Robust Initial
Enhancement (RIE), Receiver Operating Characteristic (ROC),

and

and Boltzmann-Enhanced Discrimination of ROC (BEDROC)
were assessed. These parameters were used to benchmark the
model's reliability and accurately rank compounds, as reported
in Table 2. Generally, a model with a higher AUC value should
exhibit better predictability and provide a summary of model
performance. The AUC value ranges between 0 and 1, where 1
indicates a model with perfect prediction accuracy. Five featured
hypotheses showed astonishing results in our validation process,
with the highest phase hypo score of 1.36 observed for
ADDRR_1. Therefore, pharmacophore DDRRR_1 was selected
(Table 2). The ROC plots, depicting sensitivity versus
specificity, demonstrate the precision in identifying true
positives, while the Enrichment Factor reveals the ability of the
pharmacophore to differentiate actives from decoys. ROC
analysis visually represents the sensitivity and specificity ratio
validation process, showing how effectively the model
distinguishes active from inactive compounds (Figure 2). A
steeper ROC curve, reaching a plateau at the end, indicates a
model that excels at identifying more active compounds. Higher
AUC values (closer to 1) suggest better model performance,
while lower values (closer to 0) indicate a less reliable model.
The results for DDRRR_1 indicate that the model successfully
distinguishes true actives from decoy compounds and can
identify inhibitors based on their potency.

Table 2. Validation parameters of the generated pharmacophore.

Hypothesis Phase Hypo Score EF1% BEDROC160.9 ROC AUAC Matches

DDRRR_1 1.36 100.15 1 1 1 4 0of5

ADDRR_1 1.34 100.15 1 1 1 4 0of 5
3D-QSAR 60 benzimidazole scaffolds were used. All compounds exhibit

The top model with good predictive power, denoted as
DDRRR_1 (two hydrogen bond donors and three aromatic
rings), was identified based on a five-point hypothesis (Fig. 3a).
This model features two donor groups (DD, blue) and three
aromatic rings (RRR, brown). Rings R6 and R7 correspond to
the benzimidazole ring, while one donor group maps to the NH
of the benzimidazole group, and the other donor represents the
substituted NH group. The interatomic distances in A are shown
in Figure 3b, while Figure 3c and 3d depict the mapping of active
and inactive compounds onto the pharmacophore, respectively.
These figures show that active ligands exhibit better alignment
with the DDRRR_1 pharmacophore, suggesting their potential
for higher activity. This highlights the importance of good
alignment for accurate activity prediction in the 3D-QSAR
model. To design theoretical models and assess their robustness,

biological activity within a three-unit logarithmic range.

Receiver Operating Characteristic (ROC)
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Figure 2. ROC curve of a generated best pharmacophore
model (DDRRR1)
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The developed atom-based 3D-QSAR model involved
generating multiple factors using the partial least squares (PLS)
technique. Among these factors, the 7th partial least-squares
factor emerged as the most suitable model due to its good
statistical significance and strong predictive power. The

selection of the 5th factor was based on the observed gradual

improvement in model performance up to this point. The
combined effects of H-bond donors, hydrophobic/non-polar
character, negative ionic character, positive ionic character, and
electron-withdrawing groups were evaluated, and all statistical
parameter values are presented in Table 3.

Figure 3: (a) Pharmacophoric features of validated pharmacophore model (DDRRR_1) (b) Spatial arrangement of
DDRRR_1 feature (c) DDRRR_1 model alignment of active molecules. In contrast, (d) DDRRR_1 model alignment of

inactive molecules.

The model with the highest Q2 value exceeding 0.5 was chosen
based on its superior predictive ability. Additionally, a
comprehensive external validation was performed to assess
model robustness. This validation involved calculating several
metrics for both the test set (RMSE, Q?, and Pearson correlation
coefficient) and the training set (R?, R2CV, and Fisher's (F)
ratio). A Y-randomization test yielded even better results, further
supporting the model's validity. In general, the R? value lies
between 0.7 and 0.9. Stability should be closer to 1, the F value
must be maximized as much as possible, to define the model is
not a false positive, the P value should be low, the RMSE value
lies between 0.4 and 0.5, the Q? value must be closer to 1, and
and the Pearson’s value should be closer to 1. Internal validation
indicated the robustness and predictive ability of the model. The
internal validation results demonstrated excellent performance

for the atom-based 3D-QSAR model. The training set, consisting
of 43 compounds, exhibited a strong correlation coefficient (R?
=0.94), indicating a close relationship between the predicted and
actual biological activity. Additionally, a high Fisher ratio (F =
80.1) further supported the statistical significance of the model.
The predictive capability was assessed using a separate test set
of 17 compounds. The results were highly promising, with a high
cross-validated correlation coefficient (Q2 = 0.85) and Pearson's
R (0.94). These metrics indicate a strong correlation between the
predicted and observed activity in the unseen test set. The large
F-value observed in the training set (F = 80.1) suggests a
statistically robust model, and the small significance level of the
variance ratio (P) further strengthens this confidence. A
comprehensive summary of these results is presented in Table 3.
Scatter plots were generated to visually represent the model's
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performance (Figure 4a and 4b), depicting the observed versus
predicted biological activity for both the training and test set
molecules. These plots demonstrate a good distribution of data
points, particularly in the test set, which aligns well with the

best-fit line (y = 0.83x + 0.80, Rz = 0.89). This visual
confirmation further validates the ability of the model to
accurately predict the biological activity of unseen compounds
[37].

Table 3. PLS statistical parameters of the selected 3D-QSAR model (DDRRR1).

PLS FACTOR SD R? R2CV F P RMSE Q? PEARSON-R
1 0.6927 0.6689 0.5984 82.8 2.16e-11 0.91 0.6002 0.8555
2 0.6192 0.7420 0.5676 57.5 1.71e-12 0.91 0.6002 0.8600
3 0.5751 0.7830 0.4999 46.9 5.22e-14 0.88 0.6228 0.8722
4 0.5025 0.8385 0.3356 49.3 1.52e-14 0.73 0.7398 0.9160
5 0.4246 0.8878 0.1748 58.5 1.49e-16 0.59 0.8305 0.9423
6 0.3550 0.9236 0.1284 72.6 1.27e-18 0.57 0.8427 0.9376
7 0.3158 0.9413 0.1494 80.1 1.21e-19 0.55 0.8553 0.9442
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Figure 4. The scatter plots depict the correlation between the experimental and predicted biological activity of the
benzimidazole inhibitors in the (a) training set and (b) test set. The solid line represents the best-fit line with the equation y

=0.83x + 0.80 (R2 = 0.89) for the test set.

Contour Map Analysis

Contour plot analysis was performed at specific locations of the
molecule to elucidate the essential pharmacophoric regions. The
3D-QSAR models make it easier to see the contours of the
ligand-receptor interactions and pinpoint the positive and
negative activity coefficients that responsible for the biological
activity like hydrogen bond donor, hydrophobic/ non-polar,
positive, and negative ionic and electron withdrawing properties.
The blue cubes represent the positive contribution of different
groups while the red cubes indicate negative contribution. For
visualizing the generated 3D-QSAR model and exploring its
correlation with inhibitory activity, one or more ligands from the
series have diverse inhibitory activities, were selected for
analysis. For this, the most active compound 28 (pICso= 8.337)
and least active compound 56(pICso= 4.622) were taken for

visualization purpose and shown in Figure 5a, 5b, 5¢, 5d, and 5e.
The effect of hydrogen bond donor, the blue cubes at amino
group (C-1 and C-2) of benzimidazole favours the activity
indicated the preference of hydrogen bond donor group at D5
and D4 (pharmacophoric features) position for activity of
compound 28 as shown in Figure 5a. Compound 56 has the
lowest activity (plCso 4.6) which might be due to absence of
‘NH’ group near the benzimidazole moiety (D7 pharmacophoric
features) that means the presence of ‘NH’ favourably
contributed to activity. Presence of blue cubes nearer to
benzimidazole ring favours the activity while presence of red
cubes at terminal end of substituted benzimidazole ring indicated
unfavourable regions for hydrophobic interactions which high
inhibitory activity of compound 28 (Figure 5b). While in
compound 56, the attachment of substituted alkyl chain at
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benzimidazole ring indicated unfavourable for inhibitory
activity in Figure 5c. In the contour plot of electron withdrawing
features, compound 28 contain ‘NH’ of benzimidazole ring
favours the activity and red cubes at terminal end indicates

unfavourable regions for electron withdrawing regions (Figure
5d). Compound 56 the attachment of long chains to C-2 position
of benzimidazole moiety was unfavourable for inhibitory
activity (Figure 5e).

Figure 5. Atom-based 3D-QSAR based contour maps in the context of favourable and unfavourable regions with blue and
red effects. Compound 28 (highest activity) and Compound 56 (least activity) were used as the template and were shown in
ball-stick model (a) hydrogen bond donor (b) hydrophobic/ non-polar (c) Electron withdrawing

Pharmacophore-based Virtual Screening for identifying
novel benzimidazole inhibitors

The compounds obtained from the PubChem database after
employing filters like the Lipinski rule of 5, no. of rotatable
bonds, polar surface area (PSA), and drug likeness filter have
been used to obtain potential molecules, which could be
identified as a potential inhibitor for ERa. A virtual screening
process was employed to identify potential new inhibitors with
novel scaffolds. Initially, a search of the PubChem substructure
database identified 7,133 compounds containing the
benzimidazole moiety. To refine this large set, a validated
pharmacophore model (DDRRR_1) was used as a 3D query for
filtering. This approach effectively reduced the number of
candidate inhibitors to 1143, demonstrating the efficiency of the
pharmacophore model in eliminating unsuitable structures based

on their 3D arrangement of key features. The resultant
compounds were subjected to Molecular Docking against the
targeted receptor, i.e., ERo (PDB ID: 3ERT) [38]. Molecular
docking for the selected compounds was executed using the
GLIDE program provided by Schrédinger 2023.

Before docking, the compounds' 3D structures were prepared
using the Maestro LigPrep module. This module generated
multiple conformations for each ligand, considering different
ionization states within the pH range of 7.0 + 2.0. This
comprehensive approach facilitates the exploration of ligand-
protein interactions and supports the rational design of potential
therapeutic agents. The molecular docking screening process
was performed on 1143 ligands obtained after pharmacophore-
based screening.
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The top five best docked molecules were selected to evaluate
more in-depth parameters like docking score, glide energy, and
essential amino acid interaction. All the compounds were also
compared with the standard drug Tamoxifen, SERM, has a
docking score of -5.796kcal/mal, as given in Table 4, while 2D

and 3D interaction images of all five top docked complexes were
Table 4. The selected hits obtained by Pharmacophore-based virtual screening of compounds from the PubChem Database
with their binding affinity using the GLIDE module.

given in Figure 6. Thus, the results indicated that all the top 5
protein-ligand complexes show better binding affinity, so they
are considered for further ADME/Tox profile to identify the best
molecule with the least toxicity profile and as a better therapeutic
agent.

PubChem Chemical Structure and Docking score | Glide Energy Crucial amino acid residues and H-
Compound IUPAC name (kcal/mol) (kcal/mol) bonding interactions
22 a';;gfizlﬂzaﬁlgfethy']lH GLY521, HIE524, LEU525, MET343,
2074802 LEU346 (-NH), THR347, LEU349,
(CobiuN:) ! -9.842 -37.441 ALA350, GLU353, ARG394, LEU391,
N L MET388, LEU387, LEU384, TRP383,
@[N/ LEU428, PHE404
1H-benzimidazol-2-ylmethyl-
[3_(mﬂuoromethylg'phenyﬁ ILE424, MET421, GLY420, GLY521,
i HIE524, LEU525, MET343, LEU346 (-
71494439 a NH), THR346, THR347, LEU349,
(C1sH12FsN3) N RF 9.72 35189 | ALA350, ARG394, LEU391L, PHEA04,
@EN/ LEU428, MET388, LEU387, LEU384,
H,N TRP383
2-amino-1-(3-phenylpropyl)
benzimidazole-5-carboxylic LEU391, MET388, LEU387, LEU384,
1682086 acid methyl ester TRP383, ASP351, ALA350, THR347,
(CosbioNs02) “///@ -9.269 42,015 LEU346, MET343, LEU428, ILLE424,
MET421, GLY420, GLU419, VAL418,
o o GLY521, HIES24, LEU525
2-(1H-imidazo[4,5-f][1,10]
phenanthrolin-2-yDphenol HIE524, LEU525, MET528, MET343,
HO LEU346, THR347 (-OH), ALA350,
135934901 ASP351, GLU353, GLY420, MET421,
(C1sH1NO) HN -9.221 -36.703 ILE424. LEU428, ARG394, L EU391,
- MET388, LEU387, LEU384, TRP383,
N PHE404
N |
4-(2-anilino-3H-benzimidazol -
5-yl)isoindolin-1-one LEU539, LEU536, TRP383, L3U384,
11730811 O ] LEU387, MET388, LEU391, ARG394
CateN:0) | © § 9215 44,846 (C=0), LEU428, LEU354, GLU353 (-
= O NH NH), ASP351, ALA350, LEU349,
@ THR347, LEU346, MET343, LEU525
2-[4-[(2)-1,2-diphenylbut-1-
enylJphenoxy]-N,N- LEU525, MET528, LYS529, CYS530,
dimethylethanamine ARG394, LEU391, MET388, LEU387,
Tamoxifen ) 5.357 -33.220 LEU384, TRP381 (-CsHs), PHE404,
MET343, LEU346, THR347, LEU349,
PN ALA380, ASP 352, GLU353, LEU354
N_~o O
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Absorption, Distribution, Metabolism, Excretion, and
Toxicity predictions (ADME/Tox)

Evaluating in silico ADME/Tox prediction is a critical step in
selecting lead compounds before clinical trials. This approach is
widely employed to minimize late-stage attrition caused by
unfavourable toxicity profiles and to provide insights into the
synthetic accessibility of potential drug candidates. In this study,
the top five compounds were screened using ADMET Lab 2.0,
a free web tool that facilitated the assessment of key parameters
such as physicochemical properties, medicinal chemistry
attributes, and toxicity profiles. The results of the ADME/Tox
profile of all five compounds are given in Table 5. The analysis
revealed that all five compounds fell within the optimal range of
pharmacokinetic parameters. However, PubChem compound
3074802 demonstrated the most favorable toxicity profile
among the screened compounds, highlighting its superior safety

and pharmacokinetic characteristics. The compound exhibited a
low hepatotoxicity score (0.623), indicating minimal potential
for liver toxicity. Additionally, its AMES test score (0.226)
suggests a low likelihood of mutagenicity, while the
carcinogenicity score (0.079) confirms a negligible risk of
cancer-causing potential. Furthermore, the NR-AR score (0.581)
indicates moderate interaction with nuclear receptors, which is
acceptable for drug candidates. These toxicity parameters of
PubChem compound 3074802 (2-[2-(1H-indol-3-yl) ethyl]1H-
benzimidazole) underscore the suitability as a safe and effective
therapeutic agent and make it a suitable candidate for therapeutic
applications in breast cancer treatment. These promising
properties highlight its potential for further investigation through
in vitro and in vivo studies, paving the way for its development
as a novel breast cancer therapeutic [39].

Table 5. ADME/Tox profile of the top five best compounds screened from Molecular Docking

Parameters Compounds Comment
3074802|71494439| 71682086 (135934901 11739311
Physiochemical Property
Mol. wt. 261.13 | 291.1 309.15 312.1 340.13 Optimal:100-600
nHA 3 3 5 5 5 0-12
nHD 2 2 2 2 3 0-7
LogP 3.916 3.818 3.593 3.616 4.489 Optimal: 0-3 log mol/L
< : <5: < : <5:
Lipinski Accepted| Accepted | Accepted | Accepted | Accepted MW=500; logP=5: nHAT 10; nHD <5;
Good absorption
Synthetic Accessibility Score| 1.975 2.007 1.954 2.442 2.346 SA<6 (easy to synthesize)
Absorption
Caco-2 permeability -5.099 | -5.073 -4.791 -5.062 -5.251 Optimal: higher than -5.15 log cm/s
Pgp-inhibitor 0101 | 0022 | 0994 | 012 | oege |00 excellent O'z'oot;z: medium; 0.7-1.0:
HIA 0.012 0.005 0.004 0.025 0.049 0-0.3: excellent; O.:;—OO(;Z: medium; 0.7-1.0:
MDCK Permeability 1.47E-05| 1.29E-05 | 1.95E-05 | 3.05E-05 | 7.04E-06 >2x10°cm/s: excellent
Distribution
S Optimal <90% bability of |
Plasma Protein Binding | 97.24% | 97.50% | 96.23% | 98.33% | 97.35% ptimal <90% (probability of fow
therapeutic index)
Volume Distribution 1.772 3.3 1.569 1.012 1.619 Optimal: 0.04-20L/kg
BBB Penetration 0336 | 0406 | 0948 | 0388 | oagg |00 excellent O'z'ooo':: medium; 0.7-1.0:
Metabolism
CYP1AZ2 inhibitor 0.994 0.991 0.938 0.991 0.962
CYP1AZ2 substrate 0.821 0.875 0.885 0.16 0.156 Category 0: Non-substrate / Non-inhibitor
CYP2C19 inhibitor 0.971 0.973 0.746 0.812 0.494 Category 1: substrate / inhibitor
CYP2C19 substrate 0.056 0.058 0.071 0.067 0.061
Excretion
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Clearance 4.353 4.503 9.323 3.381 3.806 > 5: excellent;< 5: poor
T2 0.807 0.404 0.378 0.525 0.301 0-0.3: excellent; 0.3-0.7: medium; 0.7-1.0:
poor
Toxicity
Hepatotoxicity 0.623 0.791 0.61 0.892 0.798 Category:0; Inactive
AMES 0.226 0.039 0.169 0.881 0.826 Category:1; Active
Carcinogenicity 0.079 0.135 0.856 0.339 0.163  |(0-0.3: excellent; 0.3-0.7: medium; 0.7-1.0:
NR-AR 0.581 0.369 0.008 0.007 0.566 poor)

..................

) — By ,\
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>

Figure 6: The 2D and 3D interaction images of Glide XP (Xtra Precision) docking of best five compounds against targeted
receptor ERa (PDB ID:3ERT) (a) Compound 3074802 (b) Compound 71494439 (c) Compound 71682086 (d) Compound
135934901(e) Compound 11739311.
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CONCLUSION
This computational study outputs the design of cancer

medication on structural insights and elucidates the selectivity
mechanism for the quinoxaline analogues in marketed
The pharmacophore hypothesis,
DDRRR1, was developed, revealing the importance of two
hydrogen bond donor groups and three aromatic rings for
optimal activity. A robust, predictive atom-based 3D-QSAR
model was successfully developed. This model, designated
DDRRR_1, exhibited excellent performance metrics, with
strong agreement between the experimentally observed and
predicted activity for the training set (R2 = 0.9413) and the test
set (R2 = 0.89). Furthermore, visualization of the 3D-QSAR
model provided valuable insights into the structure-activity
relationships within the studied molecules.

formulations. common

This understanding allows for identifying potential
modifications to the molecular structure that could optimize
binding interactions. A virtual screening approach was
employed to identify potential inhibitors of the ERa receptor for
breast cancer treatment. This strategy involved screening a
benzimidazole compound library from PubChem using a
pharmacophore model. Docking analysis was then performed on
the top hits to assess their binding interaction with the ERa
receptor. Moreover, ADME/T profile evaluation of the top 5
docked complexes, compound PubChem ID 3074802 (2-[2-(1H-
indol-3-yl) ethyl]1H-benzimidazole) emerged as the most
promising candidate.

This compound exhibited a favourable docking score (-9.842
kcal/mol), an optimal pharmacokinetic profile, and a limited
toxicity profile, suggesting its potential for further development
as a breast cancer therapeutic agent targeting ERo. The
innovative use of advanced computational techniques in this
work provides a robust framework for the rational design of safer
and more effective ERa inhibitors, paving the way for future in

vitro and in vivo investigations and potential clinical
applications.
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