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Article Information  ABSTRACT 
Received: 31st July 2024  Background: Doxorubicin (DOX) is a widely used chemotherapeutic agent that is effective against 

various solid tumors and hematologic malignancies. However, its clinical application is severely limited 

by dose-dependent cardiotoxicity, which affects nearly 26% of patients. Objective: This review focuses 

on recent insights into the molecular mechanisms of DOX-induced cardiotoxicity, particularly 

highlighting the roles of oxidative stress and mitochondrial dysfunction. Methods: We have reviewed 

and retrieved the relevant information by probing the main keywords in online databases (PubMed, 

Scopus, Science Direct and Web of Science, etc.). Screening of relevant literature was done to pick 

suitable content based on the pharmacological profile of DOX. Key biomarkers such as troponins, brain 

natriuretic peptides (BNP), and atrial natriuretic peptides (ANP) are crucial for early detection of cardiac 

injury. The overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS), 

mediated by enzymes like NADPH oxidase and mitochondrial cytochrome c, is central in triggering 

apoptosis and cardiomyocyte damage. Furthermore, DOX’s impact extends to other organs, notably the 

liver and kidneys, contributing to systemic toxicity. Conclusion: This review synthesizes current 

strategies to mitigate DOX-induced cardiotoxicity, including applying antioxidants, liposomal DOX 

formulations, and emerging nanocarrier technologies designed to enhance therapeutic selectivity. 

Looking ahead, integrating personalized medicine approaches and developing innovative therapeutic 

interventions hold promise for balancing DOX's antitumor efficacy with a reduced risk of cardiotoxicity. 

By addressing critical gaps in our understanding, this review highlights the need for integrative 

approaches combining biomarker discovery and targeted therapies to optimize patient outcomes and 

guide future research directions. 
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INTRODUCTION 
DOX, a licensed chemotherapy medication, has shown 
significant therapeutic potential due to its effectiveness and 
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effectiveness [1]. The medication, a class I anthracycline, is 
known for its harmful effects on human noncancerous cells; this 
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restricts the ability to stop the spread of infection and target 
rapidly dividing cells over several decades. It contains glyconic 
and aglyconic moieties with a tetracyclic ring, quinine-
hydroquinone, methoxy substituent, and carbonyl group. This is 
made up of a compound known as 3-amino-2,3,4-trideoxy-L-
fucosyl [2] (Figure 1)  

 
Figure1: Doxorubicin structure 

DOX, a potent chemotherapeutic drug approved by the FDA, has 
demonstrated significant treatment potential in its unaltered 
form [3]. The drug, a nonselective class I anthracycline, has been 
recognized for effectively combating rapidly proliferated cells 
and slowing disease progression; however, its toxicity to human 
body non-cancerous cells is minimal. It consists of aglycon and 
glycon components, with the sugar part linked by a glycosidic 
bond. Studies show that while DOX achieves high efficacy in 
treating various malignancies, it is associated with a 26-36% risk 
of cardiotoxicity at cumulative doses above 550 mg/m², 
compared to lower rates observed with epirubicin and 
daunorubicin. Understanding these adverse effects is crucial for 
enhancing the safety of chemotherapeutic regimens [4].    
 
Mechanism of action   
By intercalating the medication between the double-helical 
DNA's nucleotides and inhibiting topoisomerase II [Top II], 
DOX prevents malignant cells from proliferating [5]. DOX 
inhibits cell division in non-cancerous cells by creating free 
radicals, leading to toxicity. This imbalance promotes oxidative 
stress, causing nitric oxide [NO] to react with these radicals, 
resulting in reactive nitrogen species [RNS] [6]. DOX is 
converted into DOX through enzymatic or non-enzymatic 
methods, with the NADPH reductase enzyme or a ferrous- DOX 
complex formation [7]. Both processes result in the production 
of reactive oxygen species [ROS] and reactive nitrogen species 
[RNS], which in turn cause lipid peroxidation and DNA damage 
and ultimately cause both malignant and non-malignant cells to 

undergo apoptosis [8]. The detrimental effects of DOX on 
numerous organs have been explained based on several factors, 
the most important of which is considered to be oxidative stress. 
The massive production of ROS and RNS leading to lipid 
peroxidation, the dysregulation of the electron transport chain 
which impairs energy status, and the expression of genes that 
regulate antioxidants are among the numerous factors identified 
contributing to the oxidative stress induced by DOX. These 
elements push the cells in the off-target areas towards necrosis 
and apoptosis [9]. One of the primary mechanisms contributing 
to DOX-induced cardiotoxicity involves the overproduction of 
reactive oxygen species (ROS) and reactive nitrogen species 
(RNS).  
 
The enzyme NADPH oxidase plays a crucial role in this process 
by facilitating the electron transfer that generates superoxide 
radicals. These radicals are converted into more reactive species, 
leading to oxidative stress. Mitochondria-specific proteins, 
particularly cytochrome c, are critical in mediating the apoptotic 
pathway. Upon exposure to DOX, oxidative damage to the 
mitochondria results in the release of cytochrome c into the 
cytosol, which activates the caspase cascade, ultimately driving 
cellular apoptosis. Recent studies indicate that the accumulation 
of ROS and RNS induces lipid peroxidation and DNA damage 
and disrupts mitochondrial membrane potential, further 
exacerbating cardiomyocyte death. This oxidative damage is a 
key factor in the progression of DOX-induced cardiomyopathy, 
highlighting the need for targeted therapies to mitigate ROS/ 
RNS generation while preserving the drug’s anticancer efficacy 
[10].  
 
A drug's ability to cause toxicity is entirely dependent on the 
dosage used. Once DOX dosages exceed 300 mg/m² in children 
and 400–700 mg/m² in adults, the likelihood of cardiotoxicity 
increases at an exponential rate. The medication DOX has a dual 
nature and manifests cardiotoxicity in two distinct phases: an 
acute phase that starts 2-4 days after drug administration and a 
chronic phase that starts later and is characterized by left 
ventricular dysfunction, arrhythmia, congestive heart failure, 
and cardiomyopathy [11]. 
 
DOX-mediated toxicity in the heart  
DOX toxicity, a common side effect of anthracycline drugs, 
includes cardiotoxicity, acute vomiting, nausea, gastrointestinal 
issues, baldness, and neurological disturbances, often causing 
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hallucinations and light-headedness. Following early clinical 
assessments, phase II and III investigations conducted in the 
1970s demonstrated these effects [12]. DOX, lacking specific 
targeting to tumors, can influence the growth of other cell types, 
causing suppressed immunity, increased infection susceptibility, 
and delayed healing. The potentiality of these actions varies 
based on the dosage and the patient's bone marrow regeneration 
capability [13]. When administered consistently into small 
veins, DOX can cause phlebosclerosis, necrosis, cellulitis, 
thrombophlebitis, and joint movement limitation due to painful 
induration, necrosis, and extravasations in local tissues or 
organs, causing tissue hardening. 
Oxidative Stress: DOX's redox cycling at NADPH 
dehydrogenase produces excessive ROS, leading to lipid 
peroxidation. 
Mitochondrial Damage: Cytochrome c release compromises 
the mitochondrial membrane potential, promoting apoptosis 
[14].   
Biomarkers: Elevated BNP and troponins correlate with early 
myocardial damage, aiding in the timely diagnosis of 
cardiotoxicity [14].  
 
Toxicity in the heart  
Cardiotoxicity is a common type of DOX-induced toxicity, and 
there are several reasons why [Figure 2]. The medication DOX, 
which is used to treat heart diseases, needs to be used in 
moderation because it can change the structure of 
cardiomyocytes and result in cardiac hypertrophy. The leading 
causes of this toxicity are the genes brain natriuretic peptide 
[BNP] and atrial natriuretic peptide [ANP], which are similarly 
influenced by the effects of DOX on the heart muscle's 
mitochondria. Changes in mitochondrial protein expression 
amplify the redox cycling of NADH dehydrogenase and DOX. 
TLR4, or toll-like receptor 4, increases TNF-a by reducing ROS 
levels. Higher ROS levels trigger the apoptotic cascade, which 
allows mitochondria to release cytochrome c.  
 
A lifetime deposition of DOX near 500 mg/m2 increases 
cardiomyopathy risk, often leading to 20 % congestive heart 
failure in patients [15]. As previously indicated, iron oxidation 
and the production of oxygen-free radicals are the molecular 
mechanisms underlying this process. Because DOX is known to 
impact several biomarkers, measuring troponins and specific 
natriuretic peptides [proBNP and DNP] may assist in the early 
detection of DOX-induced cardiotoxicity [16]. Administering 

antioxidants has not effectively reduced toxicity levels and 
research on specific iron chelators has produced contradictory or 
unfavorable findings. This suggests that DOX-induced 
cardiotoxicity may be caused by mechanisms other than ROS 
and iron [17]. Studies have looked into the activation of p53 and 
p300 degradation and the downregulation of GATA binding 
protein 4 [GATA-4]. These proteins are impacted by DOX 
administration, resulting in the apoptosis of cardiomyocytes [18-
21]. GATA-4, a recognized transcription factor, functions as a 
component of survival for postnatal and distinct cardiac muscle 
cells. Furthermore, it has been demonstrated to activate the anti-
apoptotic gene Bcl-xL. 
 
DOX, a potent antineoplastic agent, is primarily used for dose-
limited administration due to its cardiotoxic effects, including 
arrhythmias, hypotension, and electrocardiographic alterations, 
with the frequency of these effects varying widely [22- 24], 
which disappear once the treatment ceases [25]. Chronic effects 
of DOX are observed in just 1.7% of patients, and 50% of them 
die. DOXs lead to cause dose-dependent cardiotoxicity, 
potentially resulting in congestive heart failure. In almost 4% of 
patients, cumulative doses between 500 and 550 mg/m² were 
administered, 18% received doses between 551-600 mg/m², and 
36% received doses over 601 mg/m² [26]. 630 patients with a 
combined diagnosis of lung and breast cancer were examined 
[27]. Studies indicate that approximately 26% of patients may 
develop DOX-related congestive heart failure [CHF] when 
exposed to a cumulative dose of 550 mg/m². Furthermore, 
research documents that chronic administration of DOX to mice 
over 7 weeks led to cardiac hypertrophy [28]. These findings 
were reinforced by in vitro studies indicating that DOX induces 
hypertrophy in primary neonatal rat cardiomyocytes. 
 
Animal models are crucial in preclinical research for 
understanding cardiac disorder onset and propagation in living 
organisms. Experimental studies in animals, especially rodents, 
evaluate new diagnostic and therapeutic cardiac drugs before 
clinical testing. However, their ability to predict clinical efficacy 
is debated due to their inability to represent human disease 
accurately. Most successful agents found in animal models do 
not translate to human trials due to differences in physiology and 
molecular target homology. While animal models remain a 
valuable source of in vivo information, other translational 
alternatives may eventually replace the link between in vitro 
studies and clinical applications. 
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Figure 2: DOX, an anticancer medication, causes cardiomyocytes to expand and undergo ultrastructural changes, leading 

to increased gene expression and mitochondrial damage 
 

 DOX redox cycling at NADH dehydrogenase intensifies 
reactive oxygen species [ROS] production and changes in 
mitochondrial protein expression. Toll-like receptors [TLR4] 
influence ROS levels, likely by raising TNF- levels. An increase 
in ROS levels activates the apoptotic cascade, and the 
autophagic process is activated due to mitochondrial 
deterioration and DNA damage caused by DOX [29] and in the 
myoblastic cell line H9c2 [30], which are also related to 
cytoskeletal alterations [31].  
 
Zordosky and El-Kadi demonstrated that DOX leads to a notable 
increase in the expression of atrial natriuretic peptide [ANP] and 
brain natriuretic peptide [BNP] genes, both markers of cardiac 
hypertrophy. Furthermore, they noticed increased expression of 
cytochrome P [CYP] genes, which belong to a subfamily of 
monooxygenases and are in charge of the oxidative metabolism 
of endogenous and xenobiotic chemicals (Figure 3) [32].  
Alterations in arachidonic acid metabolism, which have also 
been connected to heart failure and cardiac hypertrophy, may 
arise from activating these genes [33]. Acute DOX 
administration causes ultrastructural alterations in rat and mice 
cardiomyocytes, including interstitial edema, myocardial 
disarray, degeneration, and perinuclear vacuolation. These 
alterations also occur in mitochondria, leading to vacuolization, 

myelin deposition, membrane disruption, and organelle 
degeneration. Drug concentration affects how the myoblast cell 
line H9c2 changes. Low DOX concentrations cause alterations 
in fibrous structural proteins, mitochondrial depolarization, and 
cell shape changes. Nuclear swelling, extensive cytoplasm 
vacuolization, mitochondrial swelling, and other more 
significant cellular changes are facilitated by high doses [5–50 
HM]. At the same time, low concentrations cause alterations in 
the nuclear lamina and cardiac myosin. DOX therapy patients 
experience alterations like myofibrillar loss, sarcoplasmic 
reticulum dilatation, and swollen mitochondria. The heart's 
vulnerability to DOX-induced toxicity is heightened by its 
interaction with cardiolipin, a critical constituent of the 
mitochondrial inner membrane [34]. Compared to most other 
tissues, heart cells have a higher density of mitochondria per unit 
volume [35]. The contentious presence of a heart-specific form 
of mitochondrial complex I, or NADH dehydrogenase, an 
enzyme that can start DOX redox cycling and consequently 
increase ROS production, may be the reason why the heart has 
lower levels of antioxidant defenses than other organs [36,37]. 
The heightened vulnerability of the heart to DOX-induced 
toxicity stems from various factors. Moreover, restoring cardiac 
function following DOX-induced injury is particularly 
challenging due to the non-dividing nature of cardiomyocytes 



Journal of Applied Pharmaceutical Research 12 (6); 2024: 37 – 56  Goel et al.  
 

 
 Journal of Applied Pharmaceutical Research (JOAPR)| November – December 2024 | Volume 12 Issue 6 | 41 

[38,39]. In summary, the heart exhibits a heightened 
vulnerability to injury induced by DOX, with its cardiotoxic 
effects stemming from a complex interplay of multiple 
mechanisms. 
 
Molecular insights into the cardiotoxic effects of DOX 
There are multiple ways that DOX operates, yet pinpointing 
which one predominantly drives its cardiac toxicity remains 
uncertain. Several studies support the idea that the 
administration of DOX might cause reactive oxygen species 
[ROS], which can then cause lipid peroxidation, abnormalities 
in calcium, and disruption of energy transfer. All of these factors 
may play a significant role in the development of heart failure 
[40-42]. Nonetheless, the precise biochemical pathways 

responsible for its toxicity remain incompletely understood. As 
illustrated in Figure 2, we outline the most plausible intracellular 
and signaling pathways that underlie cardiotoxicity in the 
following section. 
 
Generation of reactive oxygen species [ROS] 
Mitochondrial dysfunction is the origin of increased ROS and 
oxidative stress and is closely associated with DOX-induced 
cardiotoxicity. Exposure to DOX mainly affects cells' 
mitochondria. One important factor contributing to DOX 
accumulation in this particular cellular compartment is the high-
affinity binding of DOX to cardiolipin in the inner mitochondrial 
membrane [43,44].

 
Figure 3: Cardiolipin’s role in Mitochondrial function 

 
The inner leaflet of the mitochondrial membrane contains a 
phospholipid called cardiolipin, essential for maintaining the 
mitochondria's structure, function, cardiac energy metabolism, 
and cell viability [45]. Oxidative stress is the primary 
mechanism via which the cardiolipin-bound DOX causes 
mitochondrial damage [46]. Complexes I, III, and IV in the 
electron transport chain [ETC], which depend on cardiolipin for 
maximum activity, are adversely affected by the electrostatic 
interaction between cardiolipin and DOX. Moreover, complex I 
have proven to be capable of catalyzing DOX's reduction to a 
semiquinone radical. When this species is reoxidized, the 
superoxide anion can be created by adding one electron to 
molecular oxygen [O2]. This electron transport via DOX can 
further disrupt the ETC since it can form an even stronger bond 
with cardiolipin [47,48]. Because of its chemical makeup, which 
includes a quinone-containing tetracycline component, DOX is 
also readily reduced by endothelium nitric-oxide synthase into 
semiquinone [49]. As previously mentioned, several membrane-
bound enzymes within mitochondria can aid in quinone's 
transition to the semi-quinone state. Among them, a subset of 
flavoprotein oxidoreductases participates in the redox quinone 

cycle of DOX. Notable examples include xanthine oxidase, The 
electron transport chain's complex I, sometimes referred to as 
nicotinamide adenine dinucleotide hydrogen [NADH] 
dehydrogenase, and NADPH/cytochrome P450, which are both 
found in the endoplasmic reticulum [50]. Auto-oxidation returns 
the semi-quinone to its parent molecule by transferring electrons 
to molecular oxygen [O2]. This process generates superoxide 
radicals, which further react to produce hydrogen peroxide 
[H2O2]. Under certain conditions, hydrogen peroxide can be 
transformed into highly reactive hydroxyl radicals in the 
presence of iron or copper ions. As a result, the buildup of DOX 
in mitochondria increases the generation of reactive nitrogen 
species [RNS] and reactive oxygen species [ROS] [51,52]. 
Reactive species cause lipid peroxidation, DNA and protein 
damage, mitochondrial DNA damage, ATP loss, cardiolipin 
peroxidation, and mitochondrial permeability transition [53,54]. 
A vicious loop may result from the interplay of ROS, mtDNA 
damage, and ETC, whereby elevated ROS levels deactivate the 
ETC and promote the production of further ROS.On the other 
hand, elevated ROS levels can damage mtDNA and inhibit ETC 
proteins, exacerbating mitochondrial malfunction and ROS 
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generation. When all these components are released from 
mitochondria, cytochrome c is released together with other 
apoptogenic factors, which starts the apoptotic process. Since 
mitochondria comprise up to 20–40% of the cellular volume of 
the heart tissue, which requires a lot of energy, cardiomyocytes 
will likely produce a large amount of free radicals in response to 
DOX through oxidative metabolism. The oxidative stress and 
mitochondrial dysfunction induced by DOX result in impaired 
contractility and arrhythmias in clinical settings. The 
downregulation of genes like GATA-4, which plays a protective 
role in cardiomyocytes, is directly associated with increased 
susceptibility to heart failure in chemotherapy patients [55]. In 
addition to ROS-mediated damage, DOX-induced cardiotoxicity 
involves immune system activation and calcium dysregulation. 
Studies have shown elevated intracellular calcium levels trigger 
apoptosis through calcineurin signaling, exacerbating 
cardiomyocyte death [56].  
 
The Pathway of Cell Self-Destruction: Exploring Apoptosis 
Mechanisms 
DOX triggers apoptosis through both intrinsic and extrinsic 
mechanisms. Human promyelocytic leukemia [HL60] cells 
treated with DOX showed caspase-3 protein activation, which 
led to cell death [57,58 ]. The study reveals an H2O2-dependent 
mechanism mediating apoptosis through PARP. DIC is 
primarily caused by increased mitochondrial membrane 
permeability and NOX activation, with the mitochondrial-
dependent intrinsic route being a key player. The work in rat 
cardiomyoblasts [H9c2] emphasizes how the nuclear factor-
kappa B [NFκB] signaling pathway controlled by NOX/ROS 
contributes to the induction of DOX-induced apoptosis, with 
ERK1/2 and MAK involved in the cascade, leading to cell death 
[59,60]. Similarly, the involvement of ERKs and p53 in 
facilitating DOX-induced apoptosis in H9c2 cells and 
cardiomyocytes has been elucidated. DOX facilitates 
cardiomyocyte apoptosis by engaging extrinsic pathway 
mediators such as death receptors, causing DOX-treated human 
induced pluripotent stem cell-derived cardiomyocytes [iPS-
CMs] to overexpress death receptors [61]. Upon up-regulation, 
these death receptors [DRs] bind with their corresponding 
ligands, initiating the caspase cascade and culminating in 
apoptosis. Additionally, TNF-related apoptosis-inducing ligand 
[TRAIL] has been found to enhance drug-induced cardiotoxicity 
[DIC] further, indicating that serum levels of TRAIL might serve 
as predictive biomarkers for identifying populations at 

heightened risk for DIC [62]. Caspase inhibitors offer 
incomplete protection against cell death, prompting the 
discovery of a caspase-independent pathway driven by 
mitochondrial apoptosis-inducing factor [AIF]. Elevated ROS 
levels induced by DOX lead to heightened cathepsin B activity, 
triggering the release of AIF from mitochondria. AIF, in turn, 
induces DNA damage, enhances p53 expression, and activates 
PARP1, ultimately leading to caspase-independent apoptosis. In 
vivo experiments conducted on male Wistar rats demonstrated 
that acute drug-induced cardiotoxicity [DIC] involves apoptosis 
of cardiomyocytes [63]. DOX treatment did not increase 
TUNEL-positive cardiomyocyte percentages or cause apoptotic 
cells to decline [64] A clinical investigation revealed that DOX 
therapy could potentially hinder myocardial growth in pediatric 
cancer patients, leading to a slight elevation in left ventricular 
wall thickness attributed to the loss or injury of cardiac myocytes 
induced by DOX [65]. Similar findings were also documented 
in children experiencing DOX-induced congestive heart failure 
[CHF] [66]. Two adult patients with CHF showed a significant 
decrease in cardiac myocytes and degeneration after receiving a 
cumulative dose of over 700 mg/m2 post-mortem as per the 
clinical study [67]. 
 
Calcium Disturbance 
Calcium disturbance or dysregulation of calcium is a known 
mechanism of cardiotoxicity from DOX [68]. Doxorubicinol, a 
hydroxyl metabolite of DOX, impacts calcium homeostasis 
through various mechanisms, including modulating the 
sarco/endoplasmic reticulum Ca2+ ATPase and sodium/ 
potassium exchanger on the sarcolemma [69,70]. The SR 
proteins in charge of calcium transport were shown to have 
different amounts of gene expression in a rabbit model of 
cardiomyopathy. A calcium imbalance and apoptosis study 
found that calcineurin, a calcium-dependent phosphatase, 
triggers apoptosis via Fas [71]. The study found that exposure to 
DOX in rat cardiac cells increased mitochondrial ROS, leading 
to increased cytosolic calcium levels and activation of NFAT, 
enhancing Fas-mediated cardiac cell death [72]. Additionally, 
the study revealed that CaMKII disrupts calcium balance by 
promoting SR calcium leakage [73,74]. After 15 weeks of 
chronic DOX treatment, mice develop cardiac malfunction, 
potentially resulting from a decreased [Ca2+] I transient. 
Mechanical unloading raises [Ca2+] levels I handling and 
contractility in rats with cardiomyopathy caused by DOX [75]. 
The study suggests that changes in Ca2+ handling in cardiac 
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myocytes precede heart dysfunction, with mitochondrial 
deoxyribonucleic acid depletion and associated ETC impairment 
being the primary mechanisms of calcium dysfunction compared 

to other mechanisms [76]. Despite the challenges, targeting 
calcium dysfunction remains a viable method for treating DOX-
mediated cardiotoxicity [77,78]. 

 
Figure 4: Diverse mechanisms of action underlying DOX-induced cardiotoxicity both intracellularly and extracellularly 
 
Endothelin-1  
Endothelin-1 [ET-1] is a powerful peptide known for its 
vasoconstrictive properties. It triggers multiple cellular 
responses in various cell types, including cardiomyocytes. These 
responses encompass vasoconstriction, inflammation, cell 
growth, proliferation, the generation of free radicals, and 
activation of platelets [79]. ET-1 plays a crucial role in the 
progression of vascular dysfunction, cardiovascular ailments, 
and drug-induced cardiotoxicity [DIC], notably in initiating 
dysfunction in the left ventricle [80]. DOX treatment increases 
plasma concentrations in patients and animal models of 
cardiomyopathy, affecting both acute and chronic studies [81-
83]. Schwabe et al.'s study on the murine DOX cardiotoxicity 
model revealed that ET-1 receptor subunits ETA and ETB 
contribute to DIC, with ET-1 antagonists modulating signal 
transduction pathways [84]. The ET-1 receptor, specifically its 
ETA subunit, in primary neonatal rat cardiomyocytes, up-
regulates MnSOD, demonstrating cytoprotective effects at an 
early DIC rescue phase. 
 
Topoisomerase-II  
DOX also targets topoisomerase-II as another cellular 
mechanism, causing DNA to experience single- and double-
strand breaks [85]. Topoisomerase IIβ is the most prevalent 
isoform of topoisomerase between the two types found in adult 
cardiomyocyte mitochondria. It forms a ternary cleavage 

complex with DNA and DOX, which causes DNA double-strand 
breaks and consequent cell death-induced cardiotoxicity [DIC] 
has been confirmed through experiments utilizing 
cardiomyocyte-specific topoisomerase IIβ knockout mice [86]. 
The protective effects of dexrazoxane, the only medication 
licensed by the Food and Drug Administration [FDA] to prevent 
DOX-induced cardiotoxicity, further highlight the function of 
topoisomerase IIβ in mediating drug-induced cardiotoxicity 
[DIC] [87,88]. According to Deng et al., the results suggested 
that dexrazoxane prevented double-strand breaks instead of iron 
chelation by degrading topoisomerase IIβ. [89] This study marks 
the initial in vivo evidence showcasing the temporary reduction 
of topoisomerase IIβ by dexrazoxane, affirming earlier in vitro 
findings [90]. Due to the array of molecular mechanisms 
culminating in DOX-induced cardiotoxicity [DIC], its clinical 
application is restricted. Despite the identification of several 
mechanisms underlying DIC, the precise contribution of each 
remains incompletely understood. Oliveira et al. endeavored to 
discern the pathways responsible for acute and chronic DIC 
using a systems pharmacological approach [91]. According to 
system-based calculations, ETC inhibition is crucial in 
developing heart hypertrophy. This statement is consistent with 
previous independent studies on DOX-treated mice by pathway 
and biological analysis [92]. DOX-induced mtDNA damage is 
responsible for chronic cardiovascular disease, leading to 
irreversible mito-primary dysfunction at therapeutic doses. 
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Role of epigenetic alterations in DOX-induced cardiotoxicity 
Mitochondrial metabolites are crucial cofactors for various 
enzymes involved in human biochemical pathways, including 
epigenetic modifications. S-adenosylmethionine (SAM) is the 
universal substrate for DNA and histone methylation, which 
may affect cardiomyocyte genomic chromatin. DNA 
methylation, histone modifications, and non-coding RNA 
expression have been found to play a role in DOX-induced 
cardiotoxicity. Histone modifications can lead to synergistic or 
antagonistic interactions with chromatin-associated proteins, 
resulting in dynamic switching between transcriptionally active 
and silent states. HDAC6, a histone deacetylase, was 
upregulated in DOX-treated primary rat cardiomyocytes and 
mice models, leading to deacetylation of α-tubulin. Inhibition of 
HDAC6 in mice showed a cardioprotective effect against DOX 
by restoring autophagic flux [93]. 
 
Role of epigenetics in doxorubicin-induced cardiotoxicity 
Epigenetics is a natural process that involves heritable 
phenotypic changes in DNA base-pair sequences, causing gene 
function changes. These changes occur regularly due to age, 
environment, external factors, and disease state. DNA 
methylation and histone protein modification are two main 
epigenetic modifications in diseases and natural growth. These 
mechanisms induce phenotypic changes and control gene 
expression by blocking proteins that attach to the silencer region 
of the DNA. Every cell in the human body contains the same 
DNA molecule, which develops from individual cells at 
impregnation. Highly arranged epigenetic mechanisms facilitate 
normal human development and support stable expression 
regulation in diverse cell types. Regulation of these mechanisms 
involves proteins that begin, recite, and erase specific epigenetic 
alterations, defining where and when the transcriptional machine 
can approach the chief DNA sequences for regular growth and 
differentiation in embryos and fetuses. Some epigenetic marks 
work in whole human cells but run specific gene expression, 
such as DNA methylation at the CpG island, covalent alterations 
of histone proteins, and regulatory ncRNAs [94].  
 
Measurement of DOX-induced cardiotoxicity biomarkers 
Left ventricular ejection fraction [LVEF]  
When the left ventricle contracts, the percentage of blood 
volume that it pumps is known as the ejection fraction or EF. 
Under typical circumstances, LV ejects between 50% and 70% 
of its capacity. Reduced left ventricular ejection fraction [LVEF] 

is a precursor to irreversible cardiomyopathy, which can develop 
following anthracycline therapy. When deciding how to treat 
DOX-mediated cardiotoxicity, LVEF is essential [95]. LVEF 
analysis is a dependable and repeatable way of identifying and 
diagnosing early cardiac abnormalities caused by several 
chemotherapeutics, including DOX. It utilizes techniques such 
as radionuclide angiocardiography, echocardiography, and 
Doppler echocardiography [96]. Changes in LVEF with DOX 
therapy may be caused by other non-cardiac diseases as well as 
by DOX itself. Consequently, LVEF assessment should be used 
with different strategies, such as tracking DOX and its 
metabolite plasma concentrations, to evaluate cardiac function 
in patients receiving DOX treatment. While troponins and BNP 
are well-established biomarkers for cardiotoxicity, recent studies 
emphasize the potential of novel imaging techniques, such as 
123I-MIBG scintigraphy, for early detection. These biomarkers 
offer varying sensitivity levels, with troponin I showing higher 
specificity for myocardial injury than BNP [97].  
 
Scintigraphy techniques and In vivo imaging  
Various in vivo imaging and scintigraphic techniques have been 
reported. 
(i) Imaging with Indium-111 [In-111] antimyosin, 
(ii) Scintigraphy utilizing 123-labeled 

metaiodobenzylguanidine [123I-MIBG], 
(iii)  Utilization of Tc-99 annexin for scintigraphic imaging 

[98-100].  
Three techniques use radiolabeled material to identify cardiac 
targets, and In-111 antimycin is used as an immuno-
scintigraphic agent to visualize myocardial tissue and evaluate 
cardiac structures associated with myocardial cell damage. 
When irreparable injury to cardiac tissue results in the loss of the 
sarcolemma's integrity, the myocardium absorbs in-111-
antimycin. Although it is no longer in commercial use, this 
immuno-scintigraphic method has shed light on the 
cardiotoxicity caused by chemotherapy. Sensitive and 
repeatable, 123I-MIBG scintigraphy can identify anomalies in 
myocardial adrenergic innervation before a decrease in left 
ventricular ejection fraction. LV myocardium can be seen with 
intravenous injection of 123I-MIBG, which initially has 
different cardiac concentrations depending on cardiac blood 
flow and accumulation in cardiac neurons. Four hours after 
injection, this concentration stabilizes, indicating particular 
cardiac neuron damage and norepinephrine uptake dysfunction 
[101]. In a study of patients with various neoplasms treated with 
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DOX, cardiac uptake of 123I-MIBG was decreased in a dose-
dependent manner by DOX; this suggests that DOX has a 
cardiac adrenergic neurotoxic impact [102]. One helpful 
technique for identifying drug-related heart failure early on is 
123I-MIBG scintigraphy; apoptotic cardiomyocytes can be seen 
using 99mTc-annexin scintigraphy. These methods have 
enhanced our knowledge of cardiac damage at the cellular and 
molecular levels. They have been found in cancer patients 

receiving anthracycline therapy, even though they are no longer 
employed to diagnose chemotherapy-induced cardiac 
dysfunction [103-106]. When proteases and sphingomyelinases 
are active, The extracellular layer of the cardiomyocyte 
membrane is where phosphatidylserine [PS] molecules migrate 
and the cell undergoes apoptosis. It is possible to image 
apoptotic cardiomyocytes at this stage with 99mTc-annexin V. 

 
Table 1: Comparative Evaluation of Biomarkers for DOX-Induced Cardiotoxicity 

Biomarker Sensitivity Specificity Ease of Use Clinical Utility  

Cardiac Troponin 
I (cTnI) 

High (Detects 
early myocardial 
injury) 

High (Specific 
to myocardial 
tissue) 

Moderate 
(Requires 
blood sample) 

Widely used for early detection of cardiotoxicity; 
elevated levels correlate with myocardial damage 
and predict long-term outcomes.  

Cardiac Troponin 
T (cTnT) 

Moderate to High 
High (Cardiac-
specific) 

Moderate 

Useful in detecting chronic cardiotoxicity; cTnT 
levels increase with cumulative DOX dosage. 
High-sensitivity assays enhance early diagnosis, 
particularly in pediatric patients. 

B-type Natriuretic 
Peptide (BNP) 

Moderate 

Moderate (Can 
be influenced 
by other 
conditions) 

High (Simple 
blood test) 

Effective for monitoring heart failure; elevated 
BNP levels correlate with left ventricular 
dysfunction. Recent research suggests combining 
BNP with imaging for enhanced sensitivity. 

N-terminal 
proBNP (NT-
proBNP) 

Moderate to High Moderate High 

Useful for early detection of diastolic dysfunction; 
more stable than BNP in circulation. New studies 
indicate its potential in detecting subclinical cardiac 
dysfunction in chemotherapy patients. 

Echocardiography 
(LVEF) 

Moderate 
Low (Affected 
by loading 
conditions) 

High (Non-
invasive) 

Commonly used to assess left ventricular function; 
can detect reductions in LVEF but may miss 
subclinical changes. Advanced techniques like 
strain imaging offer improved sensitivity. 

123I-MIBG 
Scintigraphy 

High High 
Low (Requires 
specialized 
equipment) 

Provides early detection of myocardial adrenergic 
dysfunction before LVEF changes. Useful for 
patients with subclinical cardiotoxicity. Limited 
availability in routine practice. 

99mTc-Annexin 
V Imaging 

High (Detects 
apoptosis) 

High 
Low (Requires 
nuclear 
imaging) 

Identifies apoptotic cardiomyocytes; sensitive for 
early stages of DOX-induced cardiotoxicity. 
Promising in research but not widely adopted 
clinically due to cost and accessibility. 

Galectin-3 Moderate Moderate Moderate 

Emerging biomarker for fibrosis and inflammation 
in heart failure. Shows promise in detecting early 
cardiac remodeling in cancer patients receiving 
DOX therapy. 

High-Sensitivity 
C-Reactive 
Protein (hs-CRP) 

Low to Moderate 

Low (Non-
specific 
inflammatory 
marker) 

High 

May indicate systemic inflammation related to 
DOX therapy but lacks specificity for cardiac 
damage. Potential use in combination with other 
biomarkers. 
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Apoptosis creates blebs and vesicles in the outer membrane layer 
of cardiomyocytes before morphological alterations. DNA 
fragmentation, cytoskeleton disintegration, cytoplasm volume 
reduction, and nuclear chromatin condensation are intracellular 
changes [107]. Animal models have shown elevated uptake of 
99mTc-annexin V in the myocardium, with more prolonged 
exposure resulting in higher uptake. These findings align with 
histopathology and immunohistochemistry studies on DOX 
cardiotoxicity [108,109] and other toxicity indices. The TUNEL 
technique is an additional tool that facilitates the identification 
of advanced stages of apoptosis by identifying damage to DNA 
[110]. The method's restricted ability to identify late apoptotic 
cells makes it potentially unsuitable for early TDM of DOX-
induced cardiotoxicity. Combining scintigraphy imaging with 
the TUNEL assay and 99mTc-annexin V might be more 
efficient. 
 
Specific soluble cardiac biomarkers for clinical use  
A useful predictor of drug therapy [TDM] for DOX therapy is 
the assessment of cardiac biomarkers in serum, such as cardiac 
troponin T and I, natriuretic peptide [ANP], and brain natriuretic 
peptide [BNP] [111]. In contrast to scintigraphic and imaging 
methods, serum amounts of cardiac-specific proteins released 
from damaged cardiomyocytes show myocardial damage in its 
early phases. Initially, cardiac troponin T was considered a 
potential biomarker [112]. According to the study, the absence 
of an acute increase in children limits the utility of cTnT as a 
prospective non-invasive cardiac biomarker for therapeutic use 
in DOX therapy [113-115]. A study in breast cancer patients 
showed that DOX treatment increases brain natriuretic peptide 
[BNP] levels and cTnT levels. Recent research indicates that 2D-
STE, combined with cTnT levels, is superior to conventional 
electrocardiography in detecting cardiotoxicity early, thereby 
improving the effectiveness of DOX therapy treatment. 
Natriuretic peptides such as BNP were connected to 
compromised left ventricular diastolic performance in adult non-
Hodgkin's lymphoma patients receiving DOX therapy [116, 
117]. In pediatric cancer patients experiencing left ventricular 
ejection fraction [LVEF] dysfunction, concentrations of 
natriuretic peptides are elevated, primarily correlating with 
systolic function, unlike in adult patients. Nevertheless, 
monitoring LVEF continues to be the recommended approach 
for clinical diagnosis even when there is a correlation between 
natriuretic peptide concentrations and decreased LVEF and 
prognosis in DOX-induced heart failure [118]. 

Strategies for prevention of DOX-induced cardiotoxicity  
Dose-Dependent administration 
The study suggests that slow continuous administration of 
anthracycline [DOX] is safer from a cardiotoxicity standpoint 
than large bolus doses, and dose-fractionated weekly schedules 
can significantly reduce cardiac events without compromising 
effectiveness compared to the usual three-week regimen [119]. 
The mechanism of continuous DOX plasma formation in the 
heart is thought to increase the exposure of cardiomyocytes to 
DOX, thereby reducing the occurrence of DIC [120]. 
Administering DOX infusions over extended periods ranging 
from 48 to 96 hours reduced cardiotoxicity and displayed 
anticancer effectiveness. However, modifying the timing of 
administration did not produce comparable outcomes between 
adult patients and pediatric populations. While continuous 
infusions lasting 48 hours were reported to be safer for breast 
cancer patients, children receiving DOX treatment for acute 
lymphoblastic leukemia [ALL] did not benefit from cardiac 
protection [121- 123]. 
 
Vitamin E  
Vitamin E, a fat-soluble compound, is formulated by combining 
four tocopherols and four tocotrienols [124,125]. Because 
vitamin E is an antioxidant, it shields cell membranes from 
reactive oxygen species. According to a study, vitamin E can 
prevent Dox-induced cardiotoxicity. Vitamin E is beneficial for 
Dox-induced acute cardiotoxicity. Compared to cardiotoxicity, 
other antioxidants such as vitamin C, the seven organic 
compounds PZ51, reduced glutathione, ambroxol, ursolic acid, 
and oleanolic acid only marginally improve cardiotoxicity 
[126,127]. 
 
Modified formulations 
To lessen DOX's cardiotoxic effects, research teams have looked 
closely at modified formulations of the drug, such as liposomal 
encapsulation techniques [128-130]. Liposomal formulations 
can encapsulate hydrophilic drugs directly surrounded by the 
aqueous compartment or integrate nonpolar drugs into the lipid 
bilayer. In the market, non-PEG-related and PEGylated 
liposomal DOX formulations are obtainable, with the PEGylated 
versions being the predominant choice in the United States 
[131]. The PEGylated liposomal version of DOX, approved by 
the FDA, is called Doxil. Patients with multiple myeloma, 
ovarian cancer, and Kaposi's sarcoma who have had at least one 
prior chemotherapy treatment failure are prescribed it [132]. 
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Because of their improved permeability retention effect, 
liposomal formulations of DOX accumulate preferentially at the 
tumor site and cause lower peak plasma concentrations of free 
DOX, which reduces their cardiotoxic effects  [133]. In addition, 
PEGylation of liposomes prolongs their bloodstream circulation 
duration by preventing absorption by the reticuloendothelial 
system. This ensures sustained efficacy while enhancing safety 
by encapsulating free DOX [134]. Furthermore, Liposomal 
DOX formulations produced reduced cardiotoxicity while 
keeping breast cancer treatment effective, particularly when 
combined with other chemotherapy medications, according to an 
analysis of phase II and III clinical studies. This implies that 
liposomal versions of DOX may be a safer alternative to regular 
DOX in treating various malignancies [135]. Due to their 
versatility and efficacy, hybrid nanosystems are increasingly 
used in gene therapy, drug delivery, phototherapy, tissue 
regeneration, vaccines, antibacterials, biomolecule detection, 
imaging probes, and theranostics. These nanosystems can be 
classified based on their foundational components, accessory 
moieties, and hybridization architecture. The study of cardiac 
scaffolds focuses on material selection, surface engineering, 
processing methods, and electrical coupling between artificial 
scaffolds and native tissue. Nanofibrous hybrids and carbon and 
metal-based systems enable cardiac tissues, and functionalized 
CNTs have led to human-induced pluripotent stem cell-derived 
cardiomyocyte maturation [136] 
 
Allicin 
Allicin, a bioactive component of garlic, constitutes an 
organosulfur molecule. It demonstrates a range of 
pharmacological activities, such as antifungal, antioxidant, 
antibacterial, and anticarcinogenic qualities [137]. It functions 
as a cytoprotective drug to stop Dox-induced cardiotoxicity. In 
acute Dox intoxication, a study found that allicin effectively 
lowers myocardial oxidative stress, inflammation, and 
apoptosis. Following the deactivation of antioxidants, for 
example, superoxide dismutase [SOD],  glutathione peroxidase, 
and catalase [CAT] by DOX, allicin works to replenish 
antioxidant levels. This process helps mitigate oxidative damage 
and reduce cardiac apoptosis [138]. 
 
Cardioprotective effects of 20[S]-ginsenoside Rh2 against 
Ginseng has been a renowned traditional Chinese medicine for 
centuries. Its main active components, ginsenosides, offer a 
range of pharmacological benefits. These include enhancing 

cardiovascular health, boosting immune function, improving 
stress resistance, memory, and learning, and supporting the 
social and mental growth of chemotherapy patients and healthy 
persons. Ginsenoside Rh2 [139] is a well-known bioactive 
ginsenoside found in Panax ginseng Rh2 pretreatment reduces 
the cytotoxic effects of Dox-induced cardiomyocyte damage 
dose-dependently, increasing cardiac cell survival rates. 
Additionally, Rh2 therapy restores serum creatine kinase, lactate 
dehydrogenase, and lactate dehydrogenase, exhibiting 
cardioprotective effects [140]. Exposure to Dox diminishes 
antioxidants such as SOD, CAT, and glutathione while elevating 
malondialdehyde levels. In contrast, Rh2 administration 
rebalances this antioxidant imbalance [141] 
 
Mediator as Hematopoietic Cytokines  
Erythropoietin [EPO] is frequently used to treat anemia and is 
essential to hematopoiesis [142]. Erythropoietin [EPO] receptors 
are distributed across different organs and tissue types, such as 
the brain, heart, and skeletal muscle. EPO demonstrates efficacy 
both in vitro and in vivo in mice by stopping cardiomyocytes by 
programmed cell death, preventing heart atrophy, and mitigating 
left ventricular dysfunction. A study examining the 
cardioprotective properties of EPO in male Wistar rats unveiled 
a reduction in oxidative stress and cardiomyocyte apoptosis 
[143] SIRT1 to EPO-mediated cardio defense alongside DIC 
through mitochondrial dysfunction and toxicity, highlighting the 
importance of SIRT1 in cellular health [144]. Similarly, TPO 
[thrombopoietin] demonstrated cardio-protective effects in 
H9c2 cells, primary myocytes from newborn rats, and animal 
models [145]. Studies conducted on rat models subjected to 
severe and prolonged DOX management revealed that 
thrombopoietin [TPO] reinstated heart function, proposing its 
mechanisms of action through the Akt and ERK pathways 
[146,147] 
 
Probucol  
Probucol is an antihyperlipidemic medication that effectively 
reduces lipid levels and acts as an antioxidant. It demonstrates a 
cardioprotective effect by lowering heart failure and cardiac 
muscle damage without interfering with Dox's antineoplastic 
effects [148]. 
 
MiR-181c shields cardiomyocytes from injury by averting cell 
apoptosis through modulation of the PI3K/Akt signaling 
pathway.  
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Heart failure, which raises the risk of death from cardiovascular 
diseases, is caused by apoptosis in the cardiac muscle. After 
receiving Dox, the microRNA miR181c—which promotes 
muscle cell survival through the PI3K/Akt signaling pathway—
is downregulated. Although MiR-181c therapy reduces 
apoptosis in Dox-treated H9C2 cells, downregulation of MiR-
181c promotes cardiotoxicity by activating toxic markers like 
TNF-α, Fas, and IL-6 [149].  
 
Nanocarrier-based delivery systems, such as liposomal 
formulations, have demonstrated reduced cardiotoxicity by 
selectively targeting tumor tissues. Antioxidants like Vitamin E 
and novel agents like allicin have shown promise in mitigating 
oxidative stress, though their clinical translation remains limited 
by inconsistent results [150] 
 
DNA gene editing using CRISPR/Cas9  
Classical CRISPR-Cas9 technology has been used to engineer 
isogenic lines of human induced pluripotent stem cells (hiPSCs) 
to investigate the association of genotype to disease phenotype 
in a precise, robust, and reproducible way. This technology has 
allowed the in vitro and in vivo study of many monogenic 
diseases of high or incomplete penetrance. For example, patient-
specific hiPSC-derived cardiomyocytes and microtissues 
harboring a mutation in PKP2 display impaired desmosomal 
stability compared to isogenic controls generated using 
CRISPR-Cas9.  
 
The researchers improved cardiac function in the mutant mice 
by performing CRISPR-Cas9-mediated in vivo genome editing 
combined with adeno-associated virus (AAV)9 delivery to 
inactivate the mutant allele. This study provided the first 
preclinical evidence that CRISPR-mediated disruption of the 
PLN R14del allele can improve cardiac function in a humanized 
mouse model and could be valuable for treating the 
arrhythmogenic phenotype in human carriers. CRISPR-Cas9 
editing has successfully generated cell lines and mouse models 
to study genetic cardiomyopathies [151]. 
 
RNA-based therapeutics 
RNA-based therapeutics, including small interfering RNA 
(siRNA), antisense oligonucleotides (ASOs), and messenger 
RNA (mRNA), have the potential to revolutionize heart failure 
management. These therapies target specific genetic and 
molecular pathways involved in heart failure pathogenesis. 

However, challenges include delivery methods, stability of RNA 
molecules, and off-target effects. RNA-based therapeutics can 
promote cardiac regeneration and repair by promoting the 
expression of factors that enhance tissue regeneration, such as 
growth factors or stem cell differentiation factors. Combining 
RNA-based therapies with existing treatment modalities, such as 
pharmacological agents or medical devices, may offer 
synergistic effects and improved clinical outcomes. For 
example, combining RNA-based therapies with beta-blockers or 
angiotensin-converting enzyme inhibitors may have additive or 
synergistic effects on cardiac remodeling and function[152]  
 
MANAGEMENT FOR CONGESTIVE HEART FAILURE 
Congestive heart failure [CHF] can be treated by reducing heart 
pressure and minimizing its causing factors. Treatment methods 
include ACE inhibitors or angiotensin II receptor antagonists, 
beta-blockers, and anti-mineralcorticoids like spironolactone. 
These medications help reduce high blood pressure by reducing 
fluid retention and reducing the need for oxygen. Additionally, 
they protect the heart from stress hormones, allowing it to beat 
steadier and require less oxygen. Beta-blockers like carvedilol, 
ACE inhibitors such as enalapril, and mineralocorticoid receptor 
antagonists like spironolactone have been effective in managing 
heart failure associated with DOX. These drugs, administered at 
optimized dosages, reduce cardiac workload and mitigate 
remodeling [153]  
 
Erythropoietin  
The hormone erythropoietin is produced in tiny amounts by 
healthy kidneys and the liver. A glycoprotein cytokine, 
erythropoietin, is primarily released by the kidney during 
periods of cellular hypoxia [154]. A few anti-anemic 
medications also exhibit cardioprotection against the cardiotoxic 
effects of Dox. An anti-anemic medication called erythropoietin 
is used to treat anemia by chemotherapy. When given 
prophylactically, erythropoietin reduces apoptosis and 
cardiomyopathy to protect against Dox-induced cardiotoxicity 
[155]. 
 
SUMMARY 
This review looks at the effect of DOX on the Heart. DOX is a 
chemotherapy medication that has been employed to treat cancer 
for more than 30 years. DOX has the potential to be fatally toxic 
to major organs, especially cardiotoxicity. Its biological 
activities include intercalating with DNA base pairs and binding 
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to enzymes connected to DNA. It can also target several 
different molecular targets, which might damage DNA and 
change gene expression—a typical kind of cardiotoxicity. DOX 
activates various molecular signals, leading to a pro-apoptotic 
protein expression is up while anti-apoptotic protein expression 
is down. This occurs through activating AMPK, influencing 
programmed cell death, and inducing the Bcl-2/Bax apoptosis 
mechanism. Consequently, the Bcl-2/Bax ratio is disrupted, 
triggering the breakdown and stimulation of caspase 3 and 9. 
Additionally, DOX prompts can cause apoptosis and permanent 
cell death in healthy tissues, leading to injuriousness in vital 
organs such as the liver, brain, renal tubules, and heart. This 
impedes cardiac healing mechanisms and destroys local bone 
marrow stem cells, rendering patients susceptible to 
cardiotoxicity. Increased expression of NFKB results in 
inflammation and necrosis of cardiac tissue, leading to 
cardiomyopathy. DOX is a medication used to treat cancer, and 
several studies have looked into drug delivery methods for this 
medication. The ability of liposomes to enter intracerebral 
malignancies without harming healthy brain tissue has 
demonstrated encouraging outcomes. Cells communicate 
through extracellular molecules like nucleotides, lipids, miRNA, 
or proteins, which cells can release in microvesicles and bind to 
receptors on other cells, causing intracellular signaling and 
modifying the physiological state of recipient cells. Exosomes in 
various biological fluids contain proteins, lipids, and genetic 
material like mRNA and miRNA. The discovery and use of 
exosomes as clinical biomarkers of cardiovascular disease risk 
is potentially aid in the development of new therapeutics. Recent 
hydrogel systems and nanoparticles have been altered to 
improve efficacy. If DOX's chemistry, transport, and toxicity are 
improved, its clinical use is anticipated to continue for a more 
extended period. Fulfilling these three objectives is necessary for 
these enhancements to succeed. 
 
CONCLUSION 
Owing to its wide range of effects, DOX is a commonly utilized 
cancer treatment medication. Its dosage, meanwhile, needs to be 
carefully addressed because it can have negative effects on the 
Heart and several organs. Although DOX's exact processes are 
unknown, it inserts into DNA, is responsible for inhibiting 
topoisomerase II enzymes, damages the mitochondrial wall, and 
raises the production of free radicals and oxidative damage. 
Developing efficient delivery methods, creating DOX mimics, 
and giving antioxidant or anti-apoptotic medications are some 

strategies to lessen negative effects. Nevertheless, specific 
approaches have not been able to reduce anthracycline toxicity 
in clinical trials. More efficient approaches ought to be 
investigated to minimize toxicity and maintain or improve the 
therapeutic effects of DOX. While animal models have provided 
significant insights into the molecular mechanisms of DOX 
cardiotoxicity, translating these findings to human clinical 
outcomes remains challenging due to differences in drug 
metabolism, genetic factors, and comorbidities.  
 
FUTURE DIRECTIONS 
Patients treated with DOX, a medication used to treat cancer, 
may experience cardiotoxicity, which could be fatal and harm 
other organs. 'ROS and iron' is the most widely accepted theory. 
Researchers should investigate how iron buildup and ROS levels 
are related to toxicity and how DOX raises ROS levels to prevent 
toxicity. Adverse effects include immune system activation, 
altered gene expression, and compromised heart repair 
mechanisms. Research should concentrate on target-specific 
DOX delivery mechanisms to avoid impeding the regeneration 
and mobilization of bone marrow cells. AI is expected to 
significantly enhance personalized medicine, even in simple 
disease treatments. While physicians have intuition, AI can link 
data in a way not typically achievable by humans. With accurate 
data, AI can diagnose cases that clinicians wouldn't, helping 
patients fight diseases earlier. AI may also revolutionize 
medication and drug design, allowing for more efficient disease 
treatment and early detection. 
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