

Research Article

JOURNAL OF APPLIED PHARMACEUTICAL RESEARCH | <mark>JOAPR</mark>

www.japtronline.com ISSN: 2348 – 0335

EVALUATION OF THE POST-COITAL ANTI-FERTILITY ACTIVITY OF MICHELIA CHAMPACA LINN. AERIAL EXTRACT IN FEMALE WISTAR RAT

Seema Devi¹, Chander Mohan²*

Article Information

Received: 10th October 2023 Revised: 3rd February 2024 Accepted: 20th February 2024 Published: 29th February 2024

Keywords

Anti-implantation activity; Plant; Extract; Dose; Photochemical activity

ABSTRACT

Background: The plant M. champaca L., commonly known as Champa, has traditionally been utilized for its medicinal properties, particularly in women's health, for managing sterility and birth control. Previous literature primarily focuses on the anti-fertility activity of leaf extracts, while limited research has explored the potential of other aerial parts, such as the bark and flowers. Therefore, this study aims to investigate the female anti-fertility actions of various aerial parts (including leaves, branches, bark, and flowers) of the M. champaca plant, expanding our understanding beyond the previously studied leaf extracts. Material and Method: The petroleum ether (PEAEMC), ethyl alcohol (EAEMC), and chloroform water (AAEMC) extracts of aerial parts of M. champaca at doses of 100 mg/kg and 200 mg/kg were administered to female Wistar rats by using an experimental model, i.e., anti-implantation and estrogenic/Anti-estrogenic activity. Result: All three extracts showed significant anti-implantation activity (p<0.01). Among all, only EAEMC Showed activity corresponding to the standard. EAEME caused an increase in the vaginal opening size and increased height and width of the endometrium in immature ovariectomized female rats; it showed an estrogen-like action when given alone, however when given along with Ethinylestradiol, it showed anti-estrogenic action. Conclusion: It was observed that EAEMC (the Ethyl alcohol extract of M. champaca) showed dose dependent anti-fertility activity. The chemical constituents like steroids, alkaloids, and flavonoids identified from the photochemical screening may be responsible for the anti-fertility activity of the aerial parts of M. champaca L.

INTRODUCTION

The population is at an alarming stage in developing countries, which indicates the necessity for effective birth control measures [1]. In decreasing the fertility rate, synthetic contraceptive agents have played a significant role, but they have some undesirable

side effects [2]. The adverse and undesired effects of hormonal contraceptives include High blood pressure, cervical cancer, stroke, breast cancer, endocrine gland dysfunction, weight gain, depression, headaches, hypermenorrhea, and fatigue [3]. The

*For Correspondence: cmlotia@hotmail.com

©2024 The authors

This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY NC), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers. (https://creativecommons.org/licenses/by-nc/4.0/)

¹IKG Punjab Technical University, Kapurthala, Punjab, India, Pin-144603

²Rayat Bahra Institute of Pharmacy, Hoshiarpur, V.P.O Bohan, Tehsil Hoshiarpur, Punjab -146104, India

activity of natural hormones is affected by synthetic or chemical compounds that disturb the equilibrium of normal hormone levels by fluctuating their production and metabolism or blocking hormones [4,5]. As per the World Health Organization (WHO), for the production of synthetic drugs in India, only locally available plants are to be used. As per the literature, Medicinal plants have traditionally been used for contraceptive potential and anti-fertility effects since ancient times [6]. The medicinal plants may induce infertility in females in distinct ways, such as inhibiting hormonal action on the uterus and ovary, inhibiting hormone production, interfering with implantation and sperm penetration, and preventing fertilization by generating a protective layer around an egg. Therefore, the mechanism of action of the plants can be divided into categories such as anti-fertility plants, anti-implantation plants, contraceptives, and Abortifacients [7].

Michelia champaca L. (Magnoliaceae), commonly known as yellow Champa in sub-Himalayan tracts up to 3,000 ft, is found in Assam, Burma, South India [8]. It is reported to have significant wound healing, antimicrobial, antidiabetic, antitumor, anti-inflammatory, antioxidant, and anti-infective properties [9].

The aerial parts of the plant contain parthenolide, β -sitosterol, michampanolide, liriodenine, 8-acetoxy parthenolide, Magno grandiose, costunolide, dihydro parthenolide, ushinsunine, magnoflorine and micheliolide [10]. Traditionally, *M. champaca* leaves are used by women for sterility in Chhattisgarh state, India [11]. The leaf extract of *M. champaca* L. showed antifertility action [12].

As per the literature, the bark of *M. champaca* L. has been used in fertility regulation in the western Ghat area of Maharashtra state, India [13]. Therefore, scientists need to scientifically explore other parts of the plant for their anti-fertility actions. The present study was performed to explore the aerial parts of the *M. champaca* plant for post-coital anti-fertility activity by using different extracts prepared using various extraction methods to identify the most suitable extract.

MATERIAL AND METHODS

Collection of Plant and Authentication

The aerial parts of *the M. champaca Linn* plant (flowers, leaves, and branches) were collected. The plant was collected from the

Herbal Garden, Panjab University, Chandigarh. A voucher sample of plant vide letter No. RBIPH/17/169 Dated 23rd May 2017, submitted to the Raw Material Herbarium and Museum, Delhi (RHMD), authenticated by Dr. Sunita Garg, Emeritus scientist, CSIR–NISCAIR with Ref. No. NISCAIR/RHMD/Consult/2017/3078-27 for future reference.

Preparation of extract

The aerial parts (flowers, leaves, and branches) were shadedried for two weeks and coarsely powdered. At room temperature, the plant material was macerated with petroleum ether (60-80) %. Then filtered, pet ether Extract (I) was obtained. The marc was again subjected to continuous hot Soxhlet extraction with ethyl Alcohol (70-80) % at 40-50° temperature. Then, filtered ethanol Extract (II) was obtained. Then, the marc left behind was macerated with chloroform water at 40-50° temperature. Then filtered, aqueous extract (III) was obtained, and Marc was discarded. The extract was evaporated under reduced pressure, and % the age of yield was found to be 3.5%, 5.3%, and 2.6%. Then it was stored in the refrigerator for further use.

Phytochemical Screening

For the phytochemical screening, petroleum ether, ethyl alcohol, and aqueous extracts of M. *champaca* were subjected to preliminary phytochemical screening as per reported methods [14].

Biological Activity

The extract obtained above was subjected to female antiimplantation activity

Experimental Animals

All the male and female Wistar rats weighing 150-200 g were selected for the anti-implantation study. Maharishi Markandeshwar University (Mullana) (Regn. No. 1355/PO/RE/ L/10/CPCSEA) approved by the Institutional Animal Ethical Committee. The study was according to the guidelines of CPCSEA, Ministry of Environment, Govt. of India. The animals were obtained from the animal house of Maharishi Markandeshwar University (Mullana). The laboratory conditions were maintained under temperature (21.5±22°C), humidity (60±1%), and 12-hour light and dark cycle. The experimental animals were allowed free access to feed and water.

Dose selection and preparation

As per the literature, *M. champaca* plant extract is safe up to 2000 mg/kg; therefore, the 100 mg and 200 mg/kg extracts were selected as the maximum dose for the study [13]. The extract dose was constituted by suspending the required quantity of extract in CMC (0.5% v/v in saline) freshly prepared and given by oral route (p.o.). Vehicle control groups were given an equal volume of CMC (0.5% v/v in saline), and Chlomiphen citrate, 1mg/day) was given to the standard group.

Estrous cycle

Smears were taken every morning between 08:00 and 09:00 by placing a dropper containing 1 to 2 ml of normal saline (0.9% NaCl) into the vagina. Place the genital fluid on a slide. Use on e slide for each animal. Observation of colorless objects in light without intensifiers using a microscope [15].

Anti-implantation activity

The female rats were caged with the male rats of proven fertility in the ratio of 2:1 in the evening of proestrus and examined the following day for evidence of copulation.

The female rats having copulation plugs or thick clumps of spermatozoa in their vaginal smear were selected as the experiment models, and that was designated as 1st day of pregnancy, and each group constituted 5-6 animals as given below:

Group I: Vehicle only (CMC 0.5%) and served as control.

Group II: Chlomiphen citrate, 1mg/day and served as Standard

Group III (PEAEMC): 100mg/kg; Group IV (PEAEMC): 200 mg/kg; Group V (EAEMC): 100 mg/kg; Group VI (EAEMC): 200 mg/kg, Group VII (AAEMC): 100 mg/kg; Group VIII (AAEMC): 200 mg/kg

The above treatment was given from 1 to 7 days of pregnancy, and on the 10th day, laparotomy was performed under anesthesia using sterile conditions. The number of implants was counted by examining the uterus. Weight gained by each group of rats was recorded, and anti-implantation activity was calculated [16].

Estrogenic and anti-estrogenic activity:

Immature ovariectomised female rats (21–23 days) between 25 and 30 gm were used during the experiment. During the process,

animals were divided into experimental and control groups, with five animals in each group. CMC 0.5% was administered to the control animals by oral route. Ethinyl estradiol in olive oil 1 μ g/rat/day was injected subcutaneously for 7 days to induce estrous as a standard. The extracts were suspended in 0.5% CMC and, for 7 days, were administered orally at the dose level of 200 mg/kg body weight and given with or without ethinyl estradiol.

On the 8th day of the experiment, all the animals were sacrificed by decapitation under light ether anesthesia, and the uteri were dissected out, surrounding tissues removed, blotted on filter paper, and weighed. A portion of the uterine tissues and adrenal glands from the control were fixed in Bouin's fluid for 24 hours, dehydrated in alcohol, and then embedded in paraffin. The paraffin blocks were sectioned at 6 mm intervals and stained with hematoxylin-eosin for histological examinations [17].

Statistical analysis

The data was analyzed by using one-way Anova Dunnett's multiple comparison test, and p<0.01 was considered to be statistically significant for control and standard.

RESULTS

Phytochemical Screening

The preliminary phytochemical screening of the plant extracts showed the presence of alkaloids, flavonoids, tannins, and steroids.

Observation of Estrus Cycle

4-day estrous cycle seen in selected female rats by using a magnifying microscope. Diestrus – 1^{st} day, Proestrus – 2^{nd} day, Estrus – 3^{rd} day, Metaestrus – 4^{th} day. From vaginal smear investigation estrus cycle of female rats is identified. Female rats with regular estrus cycles were selected for the study and placed in a separate cage with 3:1. (3 female and 1 male rat). Different stages of the estrus cycle in selected female rats are shown in Table 1

Anti-Implantation Activity

As per table no. 2, All the extracts of *M.champaca* showed the significant anti-implantation activity (p<0.01) at dose 100 mg/kg and 200 mg/kg. A Dose-dependent anti-implantation activity was observed. At dose 200 mg/kg, EAEMC (Ethanol extract) of found to be most active anti-implantation extract.

Table No. 1 Estrous cycle

Estrous cycle stages observation				
Diestrus	Proestrus			
Lots of epithelial cells	Vaginal smear looks much			
appear in clusters	clear as diestrus. Cornified			
	epithelial cells appear			
	without a nucleus			
<u></u>				
Estrus	Metaestrus			
Estrus	Metaestrus			
Estrus smear consists nearly entirely	Metaestrus Smear became darker as			
smear consists nearly entirely	Smear became darker as			
smear consists nearly entirely of keratinized superficial	Smear became darker as compare to estrus cycle.			
smear consists nearly entirely of keratinized superficial	Smear became darker as compare to estrus cycle. more giant intermediary			

Body weight gain:

As shown in Table 3, the mean body weight of all the treated groups was less than that of the control group. The body weight of rats in the 200 mg/kg group is less than that of the group that received 100 mg/kg. The change in body weight of the treated group was significantly less, corresponding to the control group. Change in body weight was also observed. The body weight of female rats with EAEMC extract 200mg/kg corresponds to the standard. Therefore, only EAEMC at 200mg/kg will be used in further estrogenic/anti-estrogenic activity.

Estrogenic/Anti-Estrogenic activity:

The effect of EAEMC on body weight, uterine weight, and vaginal cornification has been shown in Table no. 4. Administration at the dose (200 mg/kg) p.o either alone and or with ethinyl estradiol significantly (p<0.01) increased the uterine weight of ovariectomized in comparison with control. EAEMC Extract evidenced the vaginal opening and presence of cornified cells in a vaginal smear of all female rats at 200 mg/kg doses either alone or along with EE.

However, the number of cornified cells in the EAEMC-treated groups is more than the control but less than EAEMC along with the ethinyl estradiol group. It significantly increases the uterine diameter, thickness of diameter, and height of the endometrium when compared with the control. When EAEMC extract is given with ethinyl estradiol, it decreases the endometrium's diameter, thickness, and height compared to the EE group.

Table 2: % inhibition of implantation sites in female rats in different groups

Group	Dose/extract		Number of implantation sites	Average of implantation sites	
Group I	Control	Vehicle only (CMC 0.5%)	9, 6, 8, 8, 5	7.3±0.31	
Group II	Standard	Chlomiphen citrate,1mg/day)	1, 3,0, 0,1	1.0±0.12	
Group III	PEAEMC	100mg/kg	6, 5, 3, 7, 5	5.2±0.38	
Group IV	PEAEMC	200 mg/kg	5, 2, 2, 3, 3	3.1±0.23	
Group V	EAEMC	100 mg/kg	5, 6, 4, 5, 5	5.0±0.22	
Group VI	EAEMC	200 mg/kg	1, 2, 2, 2, 0	1.8±0.19	
Group VII	AAEMC	100 mg/kg	6, 5, 4, 4, 5	4.9±0.28*	
Group VIII	AAEMC	200 mg/kg	4, 2, 2, 2, 3	2.7±0.18^	

Dunnett's Multiple Comparison Test and p<0.05 was considered statistically significant; a test vs normal control; p< 0.05 = *; p< $0.01 = ^$; p< 0.001 = #.

Table 3: % Change in body weight of female rats in different groups

Group		Initial body weight	Average	Final body weight	Average	Change	%Change
Group I Cont	Control	202, 209, 207,	205.4±1.92	229, 227, 235,	232.0±1.55	26.6±1.22	12.9±0.90
	Control	198, 211		231, 238			
Carry II Stordani	Standard	204, 218, 207,	203±1.65	212, 230, 223,	218.8±1.96	14.8±1.28	6.40±0.82^
Group II	Standard	211, 205		221, 219			
Group III	PEAEMC	211, 218, 200,	211 8 1 28 241, 237, 211,	220 6 2 11	17.0 - 1.22	9.4.0.70	
Group III	100 mg/kg 211, 219 211.8±1.28 224, 235	224, 235	229.6±2.11	17.8±1.33	8.4±0.70		
Group IV	PEAEMC	214, 210, 217,	, 21.4±1.44 221, 229, 221 210, 224	221, 229, 221,	221.0±2.02	12.6±1.29	6.07±0.84^
Group I v	200 mg/kg	201, 200		210, 224			
Group V	EAEMC 100	222, 210, 217,	212±1.52	248, 238, 232,	232.0±1.95	20.0±1.35	9.43±0.91
Group v	mg/kg	202, 209	212±1.32	217, 225			
Group VI	EAEMC 200	204, 210, 206,	209.2±1.68	220, 231, 219,	222.4±1.59	13.2±1.40	6.3±0.73^
Group vi	mg/kg	211, 215		220, 222			
Group VII	AAEMC	196, 208, 204,	206.4±1.73	208, 229, 225,	223.6±2.16	17.2±1.38	8.33±0.62
	100mg/kg	215, 209		231, 225			
Group VIII	AAEMC	200, 212, 203,	207.2±1.92	209, 228, 217,	222.4±2.12	15.2±1.25	7.33±0.78*
	200 mg/kg	210, 211		231, 227			

Dunnett's Multiple Comparison Test and p<0.05 was considered to be statistically significant; test vs normal control p< 0.05 = *; p< $0.01 = ^$; p< 0.001 = #.

Table No. 4 Estrogenic/Anti-Estrogenic activity of the EAEMC

Group	Dose	Ethinyl estradiol	Body weight gain	Uterine weight	Vaginal
		µg/rat			cornification
Control Vehicle only	(CMC 0.5% v/v)	-	23.2±2.3	0.80±0.002	Nil
Ethinyl Estradiol s.c	-	1	42.6±4.4	1.70±0.006**	+++
EAEMC	200mg/kg	-	54.3±2.5ns#	1.50±0.024**	++
EAEMC +EE	200 mg/kg	1	62.1±1.5**	1.62±0.002**#	+++

n = 5 in each group; Ethinyl Estradiol as standard; **p < 0.01 compared to control; ns non-significant compared to control; #p < 0.05 compared to standard

DISCUSSION

The anti-fertility potential of *M. champaca L.* aerial parts was investigated through extraction with petroleum ether, followed by sequential extraction with ethyl alcohol and chloroform water. Phytochemical analysis revealed the presence of flavonoids, steroids, and alkaloids in all extracts. Anti-implantation activity was evaluated in female Wistar rats using 100 mg/kg and 200 mg/kg of each extract. Significantly higher activity was observed with the 200 mg/kg dose, indicating a dose-dependent effect. Furthermore, a decrease in body weight was noted, consistent with established standards. Of particular interest was the ethyl alcohol extract of *M. champaca L.* (EAEMC) at 200 mg/kg, which exhibited notable anti-

implantation activity (p<0.01). This finding suggests a potential for this extract as a contraceptive agent. Implantation equilibrium, governed by estrogen and progesterone levels, is critical for successful pregnancy [18]. Disturbances in these hormonal levels can lead to implantation failure [19].

The observed anti-implantation activity may be attributed to the extract's disruption of this hormonal equilibrium. Further investigation into the estrogenic activity of EAEMC revealed an increase in vaginal opening, vaginal cornification, and endometrial dimensions in immature ovariectomized rats when administered alone. This suggests that EAEMC possesses

estrogenic properties, likely due to its influence on estrogen levels. However, when administered concurrently with ethinylestradiol (EE), a decrease in endometrial dimensions and vaginal opening was observed. This indicates an anti-estrogenic effect, possibly mediated by negative feedback inhibition on the anterior pituitary. These results underscore the potential of *M. champaca L.* aerial parts, particularly the ethyl alcohol extract, as a source of compounds with anti-fertility properties. Further studies are warranted to elucidate the mechanisms underlying these effects and explore the potential for therapeutic applications.

CONCLUSION

The study highlights the anti-fertility potential of *M. champaca L.* aerial parts, mainly through the ethyl alcohol extract (EAEMC). Phytochemical analysis revealed the presence of bioactive compounds such as flavonoids, steroids, and alkaloids, which likely contribute to their pharmacological activities. The anti-implantation experiments demonstrated dose-dependent efficacy, with the 200 mg/kg dose exhibiting significant activity. This suggests a promising avenue for further exploration as a contraceptive agent. These findings underscore the multifaceted pharmacological potential of *M. champaca L.* aerial parts, highlighting its ability to modulate hormonal balance critical for fertility. Further research is warranted to elucidate the specific bioactive compounds responsible for these effects and to explore their potential for contraceptives and other therapeutic applications.

ACKNOWLEDGMENT

The authors thank the IKG Punjab Technical University, Kapurthala, SIAF, Panjab University, Chandigarh, and Chandigarh Pharmacy College, Jhanjeri, for their support during the research work.

FINANCIAL ASSISTANCE Nil

CONFLICT OF INTEREST

The authors declare no conflict of interest

AUTHOR CONTRIBUTION

All the authors contributed to designing the manuscript, conceptualizing it, doing the literature review, and doing the final draft. Seema Devi worked under the supervision of Chander Mohan.

REFERENCES

- [1] Chemingui MA. Public spending and poverty reduction in an oil-based economy: the case of Yemen. International Food Policy Research Institute (IFPRI), Washington, DC, USA, IFPRI Discussion Paper, 00701 (2007).
- [2] Kannel WB. Possible hazards of oral contraceptive use. *Circulation* **60(3)**,490-491(1979)
- [3] Mohamed GA, Ibrahim SR, Haidari RA. A review on natural contraceptive agents. *American Journal of Pharmaceutical Technology and Research* **4**, 124-158 (2014)
- [4] Azamthulla M, Balasubramanian R, Kavimani S. A review on medicinal plants exhibiting antifertility activity. *World Journal of Pharmacy and Pharmaceutical Sciences* 4 (3), 243-272 (2017)
- [5] Sivaraj A, Sathiyaraj K, Thirumalai T, Senthilkumar B. Ethnobotanical study of anti-fertility medicinal plants used by the local people in Kathiyavadi village, Vellore District, Tamil Nadu, India. Asian Pacific Journal of Tropical Biomedicine 2, 1285-8 (2012)
- [6] Malpani A, Mahurkar N, Aswar U. Phytochemical analysis and antifertility potential of *Cynodon dactylon* in female Wistar rats: A herbal approach towards contraception. Chinese *Herbal Medicine* 4, 281–288 (2020)
- [7] Kabra M, Bhandari S, Gupta R, Sharma A. A review on herbal contraception. *World Journal of Pharmacy and Pharmaceutical Sciences* **2**(5), 2569-77 (2013)
- [8] Chopral RN, Nayar SL, Chopra IC. Glossary of Indian Medicinal Plants, National Institute of Science Communication (NISCOM) Council of Scientific and Industrial Research (CSIR), New Delhi (2005)
- [9] Ananthi T, Chitra M. In vitro evaluation of anti-oxidant activity of *M.Champaca*(L.) Flower. *American Journal of Advanced Drug Delivery* 1(5), 734-742 (2013)
- [10] Mrugasha, G, Jadhav SS, Chaudhari VS. A Review on Michelia Champaca and Flowers. International Journal of Advanced Research Science, Communication and Technology 2(1), 554-559 (2022)
- [11] Guha M, Chakravorty M, Mukherjee J. Birth control practice among the Bhatra women. *Journal of Human Ecology* 14, 475-476 (2003)
- [12] Taprial S, Kashyap D, Vineet Mehta, Kumar S, Kumar D. Anti-fertility effects of hydroalcoholic leaves extract of Michelia champaca Linn.: A ethnomedicine used by Bhatra

- women in Chhattisgarh state of India. *Journal of Ethnopharmacology* **147** (3), 671-675 (2013)
- [13] Pokharkar RD, Saraswat RK, Kotkar S. Survey of plants having anti-fertility activity from Western Ghat area of Maharashtra state. *Journal of Herbal Medical Toxicology* 4 (2), 71-75(2010)
- [14] Khandelwal KR. Practical Pharmacognosy. Nirali Prakashan, Pune (2007)
- [15] Marcondes F, Bianchi F, et al. *Brazilian Journal of Biology* **62**, 609-614 (2002)
- [16] Padmashali B, Vaidya VP, Vagdevi HM, Sattyanarayana ND. Anti-fertility activity of the plant *Balanites roxburghii* (Balanitaceae) in female rats. *Indian Journal of Pharmaceutical Sciences* **68**(3), 347-35 (2006)

- [17] Pal SS. Fertility control of female albino rats through Sesbani sesbian seeds. *Journal of Research Education and Indian Medicine* **9**, 27–32 (1990)
- [18] Geun-Shik L, Hoe-Jin K, Yong-Woo J, Kyung-Chul C, Eui-Bae J. Estrogen receptor a pathway is involved in the regulation of -calbindin-D9k in the uterus of immature rats. *Toxicology Science* **84**, 270–277 (2005)
- [19] Gebrie E, Makonnen E, Debella A, Zerihun L. Phytochemical screening and pharmacological evaluations for the antifertility effect of the methanolic root extract of *Rumex steudelii*. *Journal of Ethnopharmacology* **6**, 139-43 (2005)